Nash Equilibrium in Weighted Concurrent Timed Games with Reachability Objectives

  • Shankara Narayanan Krishna
  • G. Lakshmi Manasa
  • Ashish Chiplunkar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7154)

Abstract

Timed automata [1] are a well accepted formalism in modelling real time systems. In this paper, we study concurrent games with two players on timed automata with costs attached to the locations and edges and try to answer the question of the existence of Nash Equilibrium (NE). Considering memoryless strategies, we show that with one clock it is decidable whether there exists a NE where player 1 has a cost bounded by a constant B, while with 3 clocks, it is not. The case of 2 clocks is an interesting open question.

Keywords

Nash Equilibrium Target Location Winning Strategy Edge Cost Time Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Science 126(2), 183–235 (1994)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alur, R., La Torre, S., Pappas, G.J.: Optimal Paths in Weighted Timed Automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 49–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J., Vaandrager, F.: Minimum-Cost Reachability for Priced Timed Automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 147–161. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Bouyer, P., Brihaye, T., Markey, N.: Improved Undecidability Results on Weighted Timed Automata. Information Processing Letters 98(5), 188–194 (2006)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bouyer, P., Brenguier, R., Markey, N.: Computing Equilibria in Two-Player Timed Games via Turn-Based Finite Games. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 62–76. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Bouyer, P., Brenguier, R., Markey, N.: Nash Equilibria for Reachability Objectives in Multi-player Timed Games. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 192–206. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Brihaye, T., Bruyère, V., Raskin, J.: Model-Checking for Weighted Timed Automata. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 277–292. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Brihaye, T., Bruyère, V., Raskin, J.: On Optimal Timed Strategies. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 49–64. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Chatterjee, K., Henzinger, T.A., Prabhu, V.S.: Timed Parity Games: Complexity and Robustness. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 124–140. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Daskalakis, C., Schoenebeck, G., Valiant, G., Valiant, P.: On the complexity of Nash equilibria of action-graph games. In: Proceedings of SODA 2009, pp. 710–719 (2009)Google Scholar
  11. 11.
    de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: The Element of Surprise in Timed Games. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 144–158. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall Inc., USA (1967)MATHGoogle Scholar
  13. 13.
    Ummels, M., Ummels, M.: The Complexity of Nash Equilibria in Infinite Multiplayer Games. In: Amadio, R.M. (ed.) FOSSACS 2008, pp. 20–34. Springer, Heidelberg (2008)Google Scholar
  14. 14.
    Ummels, M., Wojtczak, D.: The Complexity of Nash Equilibria in Simple Stochastic Multiplayer Games. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 297–308. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Ummels, M., Wojtczak, D.: Decision Problems for Nash Equilibria in Stochastic Games. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 515–529. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shankara Narayanan Krishna
    • 1
  • G. Lakshmi Manasa
    • 1
  • Ashish Chiplunkar
    • 1
  1. 1.Department of Computer Science and EngineeringIIT BombayMumbaiIndia

Personalised recommendations