Advertisement

Solving Differential Algebraic Equations in R

  • Karline Soetaert
  • Jeff Cash
  • Francesca Mazzia
Chapter
Part of the Use R! book series (USE R)

Abstract

R contains several methods for the solution of initial value problems for DAEs, which are embedded in the R packages deSolve and deTestset. Four of these, based on RADAU5, MEBDF, block implicit or Adams methods, can solve DAEs of index up to three written in Hessenberg form. The fifth method, based on BDF, is very efficient for index 1 problems and can solve some higher index problems as well. We illustrate how to solve DAEs as they arise in the modelling of constrained mechanical systems, electrical circuits, and chemical (equilibrium) reactions.

Keywords

Multibody System Differential Algebraic Equation Implicit Form Wheel Roll Backward Differentiation Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aris, R. (1965). Introduction to the analysis of chemical reactors. Englewood Cliffs: Prentice Hall.Google Scholar
  2. 2.
    Brenan, K. E., Campbell, S. L., & Petzold, L. R. (1996). Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. SIAM classics in applied mathematics. Philadelphia, PA: SIAM.Google Scholar
  3. 3.
    Brugnano, L., Magherini, C., & Mugnai, F. (2006). Blended implicit methods for the numerical solution of DAE problems. Journal of Computational and Applied Mathematics, 189(1–2), 34–50.Google Scholar
  4. 4.
    Cash, J. R., & Considine, S. (1992). An MEBDF code for stiff initial value problems. ACM Transactions on Mathematical Software, 18(2), 142–158.Google Scholar
  5. 5.
    Günther, M., Feldmann, U., & ter Maten, E. J. W. (2005). Modelling and discretization of circuit problems. In W. H. A. Schilders & E. J. W. ter Maten (Eds.), Numerical analysis in electromagnetics (pp. 523–659). Amsterdam: North-Holland/Elsevier.Google Scholar
  6. 6.
    Hairer, E., & Wanner, G. (1996). Solving ordinary differential equations II: Stiff and differential-algebraic problems. Heidelberg: Springer.Google Scholar
  7. 7.
    Iavernaro, F., & Mazzia, F. (1998). Solving ordinary differential equations by generalized Adams methods: properties and implementation techniques. Applied Numerical Mathematics, 28(2–4), 107–126. Eighth Conference on the Numerical Treatment of Differential Equations (Alexisbad, 1997).Google Scholar
  8. 8.
    Mazzia, F., & Magherini, C. (2008). Test set for initial value problem solvers, release 2.4 (Rep. 4/2008). Department of Mathematics, University of Bari, Italy.Google Scholar
  9. 9.
    Petzold L. R. (1983). A description of DASSL: A differential/algebraic system solver. IMACS Transactions on Scientific Computation, New Brunswick, NJ, pp. 65–68.Google Scholar
  10. 10.
    Rentrop, P., Roche, M., & Steinebach, G. (1989). The application of Rosenbrock-Wanner type methods with stepsize control in differential-algebraic equations. Numerische Mathematik, 55, 545–563.Google Scholar
  11. 11.
    Soetaert, K. (2011). rootSolve: Nonlinear root finding, equilibrium and steady-state analysis of ordinary differential equations. R package version 1.6.2.Google Scholar
  12. 12.
    Soetaert, K., Petzoldt, T., & Setzer, R. W. (2010). Solving differential equations in R: Package deSolve. Journal of Statistical Software, 33(9), 1–25.Google Scholar
  13. 13.
    Soetaert, K., Cash, J. R., & Mazzia, F. (2011). deTestSet: Testset for differential equations. R package version 1.0.Google Scholar
  14. 14.
    Voigtmann, S. (2006). General linear methods for integrated circuit design. PhD thesis, Humboldt-Universitat zu Berlin. (Online: Stand 2010-07-03T11:52:37Z).Google Scholar
  15. 15.
    Wagner, F. J. (1999). Multibody systems. In C. Bendtsen & P. G. Thomsen (Eds.), Numerical solution of differential algebraic equations (Tech. Rep. IMM-REP-1999-8). Lyngby, Denmark: IMM, Department of Mathematical Modelling, Technical University of Denmark. Chapter 9.Google Scholar
  16. 16.
    Zeebe, R. E., & Wolf-Gladrow, D. (2001). CO 2 in Seawater: Equilibrium, kinetics, isotopes. Elsevier oceanography series. Amsterdam: Elsevier.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Karline Soetaert
    • 1
  • Jeff Cash
    • 2
  • Francesca Mazzia
    • 3
  1. 1.Department Ecosystem StudiesRoyal Netherlands Institute for Sea ResearchYersekeThe Netherlands
  2. 2.MathematicsImperial CollegeLondonUK
  3. 3.Dipartimento di MatematicaUniversity of BariBariItaly

Personalised recommendations