Skip to main content

Initial Value Problems

  • Chapter
  • First Online:
  • 9240 Accesses

Part of the book series: Use R! ((USE R))

Abstract

In the previous chapter we derived a simple finite difference method, namely the explicit Euler method, and we indicated how this can be analysed so that we can make statements concerning its stability and order of accuracy. If Euler’s method is used with constant time step h then it is convergent with an error of order O(h) for all sufficiently smooth problems. Thus, if we integrate from 0 to 1 with step \(h = 1{0}^{-5}\), we will need to perform 105 function evaluations to complete the integration and obtain a solution with error O(h). To achieve extra accuracy using this method we could reduce the step size h. This is not in general efficient and in many cases it is preferable to use higher order methods rather than decreasing the step size with a lower order method to obtain higher accuracy. One of the main differences between Euler’s and higher order methods is that, whereas Euler’s method uses only information involving the value of y and its derivative (slope) at the start of the integration interval to advance to the next integration step, higher order methods use information at more than one point. There exist two important classes of higher order methods that we will describe here, namely Runge-Kutta methods and linear multistep methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Notwithstanding these intermediate stages or steps, you should not be tempted to call a Runge-Kutta method a “multistep” method. This terminology is reserved for a totally different type of method (Sect. 2.2).

References

  1. Aceto, L., & Magherini, C. (2009). On the relations between \(\mathrm{{B}}_{2}\mathrm{VMs}\) and Runge-Kutta collocation methods. Journal of Computational and Applied Mathematics, 231(1), 11–23.

    Google Scholar 

  2. Ascher, U. M., & Petzold, L. R. (1998). Computer methods for ordinary differential equations and differential-algebraic equations. Philadelphia: SIAM.

    Google Scholar 

  3. Ascher, U. M., Mattheij, R. M. M., & Russell, R. D. (1995). Numerical solution of boundary value problems for ordinary differential equations. Philadelphia: SIAM.

    Google Scholar 

  4. Axelsson, A. O. H., & Verwer, J. G. (1985). Boundary value techniques for initial value problems in ordinary differential equations. Mathematics of Computation, 45(171), 153–171, S1–S4.

    Google Scholar 

  5. Björck, Ȧ., & Dahlquist, G. (1974). Numerical methods. Englewood Cliffs: Prentice-Hall (Translated from the Swedish by Ned Anderson, Prentice-Hall Series in Automatic Computation).

    Google Scholar 

  6. Bogacki, P., & Shampine, L. F. (1989). A 3(2) pair of Runge–Kutta formulas. Applied Mathematics Letters, 2, 1–9.

    Google Scholar 

  7. Brugnano, L., & Magherini, C. (2004). The BiM code for the numerical solution of ODEs. Journal of Computational and Applied Mathematics, 164–165, 145–158.

    Google Scholar 

  8. Brugnano, L., & Trigiante, D. (1998). Solving differential problems by multistep initial and boundary value methods: Vol. 6. Stability and control: Theory, methods and applications. Amsterdam: Gordon and Breach Science Publishers.

    Google Scholar 

  9. Butcher, J. C. (1987). The numerical analysis of ordinary differential equations, Runge–Kutta and general linear methods (Vol. 2). Chichester/New York: Wiley.

    Google Scholar 

  10. Cash, J. R. (1980). On the integration of stiff systems of ODEs using extended backward differentiation formulae. Numerische Mathematik, 34, 235–246.

    Google Scholar 

  11. Cash, J. R., & Considine, S. (1992). An MEBDF code for stiff initial value problems. ACM Transactions on Mathematical Software, 18(2), 142–158.

    Google Scholar 

  12. Cash, J. R., & Karp, A. H. (1990). A variable order Runge–Kutta method for initial value problems with rapidly varying right-hand sides. ACM Transactions on Mathematical Software, 16, 201–222.

    Google Scholar 

  13. Curtiss, C. F., & Hirschfelder, J. O. (1952). Integration of stiff systems. Proceedings of the National Academy of Science, 38, 235–243.

    Google Scholar 

  14. Dahlquist, G. (1963). A special stability problem for linear multistep methods. BIT, 3, 27–43.

    Google Scholar 

  15. Dormand, J. R., & Prince, P. J. (1980). A family of embedded Runge–Kutta formulae. Journal of Computational and Applied Mathematics, 6, 19–26.

    Google Scholar 

  16. Dormand, J. R., & Prince, P. J. (1981). High order embedded Runge–Kutta formulae. Journal of Computational and Applied Mathematics, 7, 67–75.

    Google Scholar 

  17. Fehlberg, E. (1967). Klassische Runge–Kutta formeln funfter and siebenter ordnung mit schrittweiten-kontrolle. Computing (Arch. Elektron. Rechnen), 4, 93–106.

    Google Scholar 

  18. Fox, L. (1954). A note on the numerical integration of first-order differential equations. The Quarterly Journal of Mechanics and Applied Mathematics, 7, 367–378.

    Google Scholar 

  19. Gear, C. W. (1971). Numerical initial value problems in ordinary differential equations. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  20. Hairer, E., & Wanner, G. (1996). Solving ordinary differential equations II: Stiff and differential-algebraic problems. Heidelberg: Springer.

    Google Scholar 

  21. Hairer, E., Norsett, S. P., & Wanner, G. (2009). Solving ordinary differential equations I: Nonstiff problems (2nd rev. ed.). Heidelberg: Springer.

    Google Scholar 

  22. Henrici, P. (1962). Discrete variable methods in ordinary differential equations. New York: Wiley.

    Google Scholar 

  23. Hindmarsh, A. C. (1980). LSODE and LSODI, two new initial value ordinary differential equation solvers. ACM-SIGNUM Newsletter, 15, 10–11.

    Google Scholar 

  24. Iavernaro, F., & Mazzia, F. (1998). Solving ordinary differential equations by generalized Adams methods: Properties and implementation techniques. Applied Numerical Mathematics, 28(2–4), 107–126. ( Eighth Conference on the Numerical Treatment of Differential Equations, Alexisbad, 1997).

    Google Scholar 

  25. Iavernaro, F., & Mazzia, F. (1999) Block-boundary value methods for the solution of ordinary differential equations. SIAM Journal on Scientific Computing, 21(1), 323–339 (electronic).

    Google Scholar 

  26. Krogh, F. T. (1969) VODQ/SVDQ/DVDQ, Variable order integrators for the numerical solution of ordinary differential equations. Pasadena, Calif: Jet Propulsion Laboratory.

    Google Scholar 

  27. Krogh, F. T. (1969). A variable step, variable order multistep method for the numerical solution of ordinary differential equations. In Information processing 68 (Proceedings of the IFIP congress, Edinburgh, 1968): Vol. 1. Mathematics, software (pp. 194–199). Amsterdam: North-Holland.

    Google Scholar 

  28. Kutta, W. (1901). Beitrag zur naeherungsweisen integration totaler differentialgleichungen. Zeitschrift fur Mathematik und Physik, 46, 435–453.

    Google Scholar 

  29. Lambert, J. D. (1973). Computational methods in ordinary differential equations. London/New York: Wiley.

    Google Scholar 

  30. Petzold, L. R. (1982). A description of DASSL: a differential/algebraic system solver. IMACS Transactions on Scientific Computation.

    Google Scholar 

  31. Petzold, L. R. (1983). Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. SIAM Journal on Scientific and Statistical Computing, 4, 136–148.

    Google Scholar 

  32. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992) Numerical recipes in FORTRAN. The art of scientific computing (2nd ed.). New York: Cambridge University Press.

    Google Scholar 

  33. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007) Numerical recipes (3rd ed.). Cambridge/New York: Cambridge University Press.

    Google Scholar 

  34. Runge, C. (1895). Ueber die numerische aufloesung von differentialgleichungen. Mathematische Annalen, 46, 167–178.

    Google Scholar 

  35. Rutishauser, H. (1952). uber die instabilitat von methoden zur integration gewohnlicher differentialgleichungen. Zeitschrift fur angewandte Mathematik und Physik, 3, 65–74.

    Google Scholar 

  36. Shampine, L. F. (1977). Stiffness and nonstiff differential equation solvers. ii detecting stiffness with Runge–Kutta methods. ACM Transactions on Mathematical Software, 3, 44–53.

    Google Scholar 

  37. Shampine, L. F. (1979). Type-insensitive ODE codes based on implicit A-stable formulas (pp. 79–244). Livermore: SAND, Sandia National Laboratories.

    Google Scholar 

  38. Shampine, L. F. (1980). Lipschitz constants and robust ODE codes. In Computational methods in nonlinear mechanics (pp. 47–449). Amsterdam: North Holland.

    Google Scholar 

  39. Shampine, L. F., & Gordon, M. K. (1975). Computer solution of ordinary differential equations. The initial value problem. San Francisco: W.H. Freeman.

    Google Scholar 

  40. Shampine, L. F., & Hiebert, K. L. (1977). Detecting stiffness with the Fehlberg (4, 5) formulas. Computers and Mathematics with Applications, 3(1), 41–46.

    Google Scholar 

  41. Shampine, L. F., & Watts, H. A. (1969). Block implicit one-step methods. Mathematics of Computation, 23, 731–740.

    Google Scholar 

  42. Skelboe, S. (1977). The control of order and steplength for backward differentiation methods. BIT, 17, 91–107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Soetaert, K., Cash, J., Mazzia, F. (2012). Initial Value Problems. In: Solving Differential Equations in R. Use R!. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28070-2_2

Download citation

Publish with us

Policies and ethics