Stochastic Model of the Diffusion of Pollutants in Landfill Management Using Monte Carlo Simulation

  • Bogusław Bieda


Hazardous waste landfills, as well as landfills for other than hazardous or inert waste, require the application of technical solutions that comply with the Regulation of the Minister of Environment of 24 March 2003 on the detailed requirements regarding the location, construction, operation and closure, that should to be met by the particular types of landfills (D.U. 2003) (Official Journal “Dz. U.” No. 61, item 549). In line with the requirements of the abovementioned regulation, it is necessary to isolate the deposited waste from the subsoil with a natural geological barrier. This applies to the other than hazardous or inert waste with the thickness no less than 1 m (for the hazardous waste it is 5 m) and the filtration coefficient (diffusion) k ≤ 1.0 × 109 m/s. If artificial geological barrier is to be used, its thickness cannot be less than 0.5 m and the permeability cannot be greater than that of the natural barrier. Synthetic isolation needs to supplement the natural or artificial geological barrier, depending on which one is used. The shape of the basin needs to make it impossible for the precipitation water from the surrounding area to flow into the basin. A drainage system should be built at the bottom and on the slopes of the landfill that would ensure its reliable functioning during the service life of the landfill and during the period of 30 years after its closure. Uncertainty can be described with the help of parameters such as variance (informing about the distribution of a random variable value) or standard deviation, or with the help of other statistical methods, e.g. the MC method. The employment of MC simulation for the modelling of propagation delay of waste in porous media is a very useful tool that can be used to assess the life cycle of a modern landfill.


Hydraulic Conductivity Subject Literature Retardation Coefficient Isolation Barrier Geological Barrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Acar, Y.B., Haider, L.: Transport of low-concentration contaminants in saturated earthen barriers. J. Geotech. Eng. 116, 1031–52 (1990)CrossRefGoogle Scholar
  2. Aniszewski, A.: Modelowanie migracji zanieczyszczen w gruncie z uwzglednieniem procesu adsorpcji. Prace Naukowe Politechniki Szczecinskiej, Szczecin (2001)Google Scholar
  3. Aniszewski, A.: Rozprzestrzenianie i adsorpcja zanieczyszczeń w plynącej wodzie gruntowe. Politechnika Szczecinska, Prace Naukowe (1998), No. 536, Katedra Inżynierii Środowiska Wodnego No. 1Google Scholar
  4. Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer academic Publishers, Amsterdam/The Netherlands (1990)CrossRefGoogle Scholar
  5. Bear, J., Cheng, A.H.-D.: Modeling Groundwater Flow and Contaminant Transport. Springer Science+Business Media B.V, Dordrecht (2010). doi: 10.1007/978-1-4020-6682-5 CrossRefGoogle Scholar
  6. Bear, J.: Dynamics of Ffluids in Porous Media, p. 764. American Elsevier, New York (1972)Google Scholar
  7. Bedient, P.B., Rifai, H.S., Newell, C.J.: Ground Water Contamination: Transport and Remediation, 2nd edn. Pentice-Hall PTR, Upper Saddle River (1999)Google Scholar
  8. Bieda, B.: Zastosowanie Metody Monte Carlo Do Analizy Ryzyka Inwestycyjnego, Materiały Konferencyjne Wydziału Zarządzania AGH. Wybrane Uwarunkowania Działalności Ekonomicznej, Kraków (2000)Google Scholar
  9. Bieda, B.: Operatywne Zarządzanie i Sterowanie Obiektem w Systemie Sterowania Rozproszonego na Przykładzie Składowiska Odpadów Komunalnych. Rozprawa doktorska. AGH, Kraków (2002)Google Scholar
  10. Bieda, B., Wajs, W.: Computer modeling municipal solid waste (MSW) transit time simulation using Monte Carlo simulation. International Conference, IFORS 2002, Edinburgh, Great Britain (2002), 8–12 July 2002Google Scholar
  11. Bieda, B.: Mathematical modelling the contaminant transport for modern municipal solid waste (Msw) management., Międzynarodowa Konferencja computing, communications and control technologies-CCCT 2004, 14-17/08/, Austin, Texas, USA (2004c)Google Scholar
  12. Bieda, B.: Application of the Lon-works distributed system (technology) for the optimal landfill management or reclamation of the contaminated sites, Międzynarodowa Konferencja computing, communications and control technologies-CCCT 2004, 14–17 Aug Austin, Texas, USA (2004d)Google Scholar
  13. Bieda, B.: Decision support system for a modern municipal solid waste landfill life-cycle assessment based on the transit time contaminants modeling using Monte Carlo simulation, IBER conference, 2–6/10/2006, Las Vegas, USA (2006c)Google Scholar
  14. Bieda, B.: Zarządzanie gospodarką odpadami na świecie. Zrównoważone wykorzystanie zasobów w Europie – surowce z odpadów. (ed.) Kudełko, J., Kulczycka, J., Wirth, H. EUROMINES Europejskie Stowarzyszenie Przemysłu Wydobywczego Rud Metali i Kopalin Użytecznych. Wydawnictwo IGSMiE PAN, Kraków, pp. 28–45 (2007b)Google Scholar
  15. Biegus, A.: Probabilistyczna analiza konstrukcji stalowych. Wyd. Naukowe PWN, Warsaw-Wroclaw (1999)Google Scholar
  16. Chu, X., Mariño, M.A.: Improved compartmental modeling and application to three-phase contaminant transport in unsaturated porous media. J. Environ. Eng. ASCE 132, 211–219 (2006)CrossRefGoogle Scholar
  17. Cokca, E.: Report: use of computer program to estimate the thickness of a compacted clay liner in a landfill. Waste Manag. Res. 17, 227–230 (1999)Google Scholar
  18. Crooks, V.E., Quigley, R.M.: Saline leachate migration through clay: a comparative laboratory and field investigation. Can. Geotech. J. 21(2), 349–362 (1984)CrossRefGoogle Scholar
  19. Dagan, G. Comment On: Stochastic modeling of mass transport in random velocity field by D.H. Tang, F.W. Schwartz and L. Smith, Water Resources Research.19(4), 231–244 (1985)Google Scholar
  20. Dagan, G.: Stochastic modeling of groundwater flow by unconditional and conditional probabilities, 2. The solute transport. Water. Resour. Res. 18(4), 835–848 (1982)CrossRefGoogle Scholar
  21. Dagan, G.: Stochastic modeling of solute transport by groundwater flow: state and the art. Relation of groundwater quantity and quality. In: Dunin, F.X, Matthes, G., Gras,R.A. (eds.) Proceedings of the Hamburg Symposium, Aug 1983, IAHS Publ., 146 (1985)Google Scholar
  22. Domenico, P.A., Schwartz, F.W.: Physical and Chemical Hydrogeology. Wiley, New York (1990)Google Scholar
  23. Du, Y.J., Shen,–aff2#aff2 S.L., S.-Y., Liu, S.Y., Hayashi. S.: Contaminant mitigating performance of Chinese standard municipal solid waste landfill liner systems. Geotextiles. Geomembranes. 27(3), 232–239 (2009)
  24. D. U. No. 61, item 549, 2003. (2009). Accessed 2 Dec 2009
  25. D.U. No. 183, item 1142 of 16/10/2008. Rozporządzenie Ministra Środowiska z dnia 12 września 2008 r. w sprawie sposobu monitorowania wielkości emisji substancji objętych wspólnotowym systemem handlu uprawnieniami do emisji (2008)Google Scholar
  26. Eco Indicator 99 method. (2009). Accessed 28 Dec 2009
  27. Elmore, A.C.: Applying one-dimensional mass transport model using groundwater concentration data. J. Environ. Eng. 133(4), 372–379 (2007)CrossRefGoogle Scholar
  28. Evans, J.R., Olson, D.L.: Introduction in Simulation and Risk Analysis. Prentice Hall, New Jersey (1998)Google Scholar
  29. Freeze, R.A.: A stochastic conceptual analysis of one-dimensional ground-water flow in non-uniform homogeneous media. Water. Resour. Res. 11, 725–741 (1975)CrossRefGoogle Scholar
  30. Freeze, R.A., Cherry, J.A.: Groundwater. Prentice-Hall, Englewood Cliffs/N J (1979)Google Scholar
  31. Gaudet, N.: Design of in-situ biofilters. Master thesis, Civil Engineering Department. University of Ottawa, ON (1997)Google Scholar
  32. Gawęda, M.: Heavy metal content in common sorrel plants (Rumex Acetosa L.) obtained from natural sites in Małopolska province. Polish. J. Environ. Stud. 18(2), 213–218 (2009)Google Scholar
  33. Gelhar, L.W.: Stochastic Subsurface Hydrology. Prentice-Hal, Eaglewood Cliffs/NJ (1993)Google Scholar
  34. Gelhar, L.W.: Stochastic subsurface hydrology from theory to application. Water. Resour. Res. 22, 135S–145S (1986)CrossRefGoogle Scholar
  35. Goodall, D.C., Quigley, R.M.: Pollutant migration from two sanitary landfills sites near Ontario. Can. Geotech. J. 14(2), 223–236 (1977)CrossRefGoogle Scholar
  36. Hoeksema, R.J., Kitanidis, P.K.: Analysis of spatial variability of properties of selected aquifers. Water. Resour. Res. 21, 563–572 (1985)CrossRefGoogle Scholar
  37. Hritonenko, N., Yatsenko, Y.: Mathematical Modeling in Economics, Ecology and the Environment. Kluwer Academic Publishers, Dordrech (1999)Google Scholar
  38. Khandelwal, A., Rabideau, A.J.: Transport of sequentially decaying reaction products influenced by linear nonequilibrium sorption. Water. Resour.Res. 35(6), 1939–1945 (1999)CrossRefGoogle Scholar
  39. Koning, A., Schowanek, D., Dewaele, J., Weisbrod, A., Guinée, J.: Uncertainties in carbon footprint model for detergents; quantifying the confidence in comparative results. Int. J. Life. Cycle. Assess. 15, 79–89 (2010)CrossRefGoogle Scholar
  40. Kowalski, Z., Kulczycka, J., Góralczyk, M.: Ekologiczna ocena cyklu życia procesów wytwórczych (LCA). Wydawnictwo naukowe PWN, Warsaw (2007)Google Scholar
  41. Li, Y.Y., Wu, G.: Numerical simulation of transport of four heavy metals in kaolinite clay. J. Environ. Eng. 125, 314–324 (1999)CrossRefGoogle Scholar
  42. Lorance, R.B., Wendling, R.V.: Basic techniques for analyzing and presentation of cost risk analysis. (1999). Accessed 27 Dec 1999
  43. Lunn, M., Lunn, R.J., Mackay, R.: Determining analytic solution of multiple species contaminant transport, with sorption and decay. J. Hydrol. 180, 195–210 (1996)CrossRefGoogle Scholar
  44. Majer, E., Łuczak-Wilamowska, B., Wysokinski, L., Dragowski, A.: Zasady oceny przydatności gruntów spoistych Polski do budowy mineralnych barier izolacyjnych. Warsaw, 2007. (2009). Accessed 3 Dec 2009
  45. Nima, R.: Numerical modeling of coupled consolidation and contaminant transport in a deformable porous medium. MS Thesis (2003)Google Scholar
  46. Ostasiewicz, S., Rusnak, Z., Siedlecka, U.: Statystyka, elementy teorii i zadania. Wydawnictwo Akademii Ekonomicznej, Wrocław (1995)Google Scholar
  47. Pilkey, O.H., Pilkey-Jarvis, L.: Useless Arithmetic Why Environmental Scientists Can’t Predict the Future? Columbia University Press, New York (2007)Google Scholar
  48. Rabl, A., Spadaro, J.V.: Damages and costs of air pollution: an analysis of uncertainties. Environ. Int. 25(1), 29–46 (1999)CrossRefGoogle Scholar
  49. Raport o oddziaływaniu na środowisko projektowanej przebudowy składowiska odpadów stałych w Pleszowie, Mittal Steel Poland, Kraków (2007)Google Scholar
  50. Rowe, R.K.: Diffusive transport of pollutants through clay liners. In: Christensen, T., Cossu, R., Stegmann, R.E., Spon, F.N. (eds.) Chapter 3.2 in Book Landfilling of Waste, pp. 219–245. Chapman & Hall, London (1994)Google Scholar
  51. Russo, D.: A note on the effective parameters of the convection–dispersion. Water. Resour. Res. 38(2), 9-1–9-7 (2002)CrossRefGoogle Scholar
  52. Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M.: Sensitivity Analysis in Practice. A Guide to Assessing Scientific Models. Wiley, Chichester (2004)Google Scholar
  53. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global Sensitivity Analysis. The Primer. Wiley, Chichester (2008)Google Scholar
  54. Schwartz, F.W., Zhang, H.: Fundamentals of Ground Water. Wiley, New York (2003)Google Scholar
  55. Shackelford, C.D.: Critical concepts for column testing. J. Geotech. Eng. 120(10), 1804–1828 (1994)CrossRefGoogle Scholar
  56. Shackelford, C.D., Daniel, D.E.: Diffusion in aaturated aoils. I: background. J. Geotech. Eng. ASCE 117(3), 467–484 (1991)CrossRefGoogle Scholar
  57. Shackelford, C.D.: Transit-time design of earthen barriers. Eng. Geol. 29, 79–94 (1990)CrossRefGoogle Scholar
  58. Snopkowski, R.: Symulacja stochastyczna. AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Kraków (2007)Google Scholar
  59. Spadaro, J.V., Rabl, A.: Estimating the uncertainty of damage costs of pollution: a simple transparent metod and typical results. Environ. Impact Assess. Rev. 28, 166–183 (2008)CrossRefGoogle Scholar
  60. Stanisz, A.: Przystępny kurs statystyki z zastosowaniem STATYSTICA PL na przykładach medycyny, vol. 1. Statystyki podstawowe. StatSoft Polska Sp. z o.o, Kraków (2006)Google Scholar
  61. Suh, Y., Rousseaux, P.: An LCA of alternative wastewater sludge treatment scenarios. Resour. Conserv. Recy. 35, 191–200 (2002)CrossRefGoogle Scholar
  62. Tadeusiewicz, R.: Przetwarzanie, analiza i rozpoznawanie sygnałów biomedycznych z wykorzystaniem sieci neuronowych (1999)Google Scholar
  63. Uncertainty in industrial practice. In: de Rocquigny, E., Devictor, N., Tarantola, S. (eds.) A Guide to Quantitative Uncertainty Management.. Wiley (2008)Google Scholar
  64. Unice, K.M., Logan, B.E.: Insignificant role of hydrodynamic dispersion on bacteria transport. J. Environ. Eng. 126, 491–500 (2000)CrossRefGoogle Scholar
  65. Van Genuchten, M.T.: Convective–dispersive transport of solutes involved in sequential first-order decay reactions. Comput. Geosci. 11(2), 129–147 (1985)CrossRefGoogle Scholar
  66. Warith, M., Fernandes, L., Gaudet, N.: Design of in-situ microbial filter for the remediation of naphthalene. Waste. Manag. 19, 9–25 (1999)CrossRefGoogle Scholar
  67. Yeh, H.D., Yeh, G.T.: Analysis of point-source and boundary-source solutions of one-dimensional groundwater transport equation. J. Environ. Eng. 133(11), 1032–1042 (2007)CrossRefGoogle Scholar
  68. Yenni, H.: Simulation techniques for risk-based financing estimates in behavioral health managed care. (1999). Accessed 27 Dec 1999
  69. Zaradny, H.: Matematyczne metody opisu i rozwiązań zagadnień przepływu wody w nienasyconych i nasyconych gruntach i glebach, praca habilitacyjna, Instytut Budownictwa Wodnego PAN, No. 23, Gdańsk (1990)Google Scholar
  70. Zdanowicz, R.: Modelowanie i symulacja procesów wytwarzania. Wydawnictwo Politechniki Śląskiej, Gliwice (2002)Google Scholar
  71. Zhiang, E.S., Gin, K.Y.H., Chan, E.S., Chou, L.M.: Three-dimensional ecological-eutrophication model for Singapore. J. Environ. Eng. 127, 928–935 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Faculty of ManagementAGH University of Science and TechnologyKrakówPoland

Personalised recommendations