On Cutwidth Parameterized by Vertex Cover
Abstract
We study the Cutwidth problem, where input is a graph G, and the objective is find a linear layout of the vertices that minimizes the maximum number of edges intersected by any vertical line inserted between two consecutive vertices. We give an algorithm for Cutwidth with running time O(2 k n O(1)). Here k is the size of a minimum vertex cover of the input graph G, and n is the number of vertices in G. Our algorithm gives an O(2 n/2 n O(1)) time algorithm for Cutwidth on bipartite graphs as a corollary. This is the first non-trivial exact exponential time algorithm for Cutwidth on a graph class where the problem remains NP-complete. Additionally, we show that Cutwidth parameterized by the size of the minimum vertex cover of the input graph does not admit a polynomial kernel unless \(\ensuremath{\textrm{NP} \subseteq \textrm{coNP}/\textrm{poly}}\). Our kernelization lower bound contrasts the recent result of Bodlaender et al.[ICALP 2011] that Treewidth parameterized by vertex cover does admit a polynomial kernel.
Keywords
Bipartite Graph Vertex Cover Hamiltonian Path Input Graph Polynomial KernelPreview
Unable to display preview. Download preview PDF.
References
- 1.Adolphson, D., Hu, T.C.: Optimal linear ordering. SIAM J. Appl. Math. 25, 403–423 (1973)MathSciNetCrossRefMATHGoogle Scholar
- 2.Bellman, R.: Dynamic programming treatment of the travelling salesman problem. J. ACM 9(1), 61–63 (1962)MathSciNetCrossRefMATHGoogle Scholar
- 3.Björklund, A.: Determinant sums for undirected hamiltonicity. In: FOCS, pp. 173–182 (2010)Google Scholar
- 4.Blin, G., Fertin, G., Hermelin, D., Vialette, S.: Fixed-parameter algorithms for protein similarity search under mrna structure constraints. Journal of Discrete Algorithms 6, 618–626 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 5.Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new technique for kernelization lower bounds. In: Schwentick, T., Dürr, C. (eds.) STACS. LIPIcs, vol. 9, pp. 165–176. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)Google Scholar
- 6.Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Preprocessing for Treewidth: A Combinatorial Analysis through Kernelization. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 437–448. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 7.Bodlaender, H.L., Thomasse, S., Yeo, A.: Analysis of data reduction: Transformations give evidence for non-existence of polynomial kernels, technical Report UU-CS-2008-030, Institute of Information and Computing Sciences, Utrecht University, Netherlands (2008)Google Scholar
- 8.Botafogo, R.A.: Cluster analysis for hypertext systems. In: SIGIR, pp. 116–125 (1993)Google Scholar
- 9.Chung, M., Makedon, F., Sudborough, I., Turner, J.: Polynomial time algorithms for the min cut problem on degree restricted trees. SIAM Journal on Computing 14, 158–177 (1985)MathSciNetCrossRefMATHGoogle Scholar
- 10.Diaz, J., Penrose, M., Petit, J., Serna, M.: Approximating layout problems on random geometric graphs. Journal of Algorithms 39, 78–117 (2001)MathSciNetCrossRefMATHGoogle Scholar
- 11.Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph Layout Problems Parameterized by Vertex Cover. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 12.Fomin, F.V., Kratsch, D., Todinca, I., Villanger, Y.: Exact algorithms for treewidth and minimum fill-in. SIAM J. Comput. 38(3), 1058–1079 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 13.Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. In: STOC 2008: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 133–142. ACM (2008)Google Scholar
- 14.Gavril, F.: Some np-complete problems on graphs, pp. 91–95 (1977)Google Scholar
- 15.Heggernes, P., van ’t Hof, P., Lokshtanov, D., Nederlof, J.: Computing the Cutwidth of Bipartite Permutation Graphs in Linear Time. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 75–87. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 16.Heggernes, P., Lokshtanov, D., Mihai, R., Papadopoulos, C.: Cutwidth of Split Graphs, Threshold Graphs, and Proper Interval Graphs. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 218–229. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 17.Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. Journal of the Society for Industrial and Applied Mathematics 10(1), 196–210 (1962)MathSciNetCrossRefMATHGoogle Scholar
- 18.Jansen, B.M.P., Kratsch, S.: Data reduction for graph coloring problems. CoRR abs/1104.4229 (2011)Google Scholar
- 19.Junguer, M., Reinelt, G., Rinaldi, G.: The travelling salesman problem. In: Handbook on Operations Research and Management Sciences, pp. 225–330 (1995)Google Scholar
- 20.Karger, D.R.: A randomized fully polynomial time approximation scheme for the all-terminal network reliability problem. SIAM J. Comput. 29(2), 492–514 (1999)MathSciNetCrossRefMATHGoogle Scholar
- 21.Karp, R.M.: Dynamic programming meets the principle of inclusion and exclusion. Oper. Res. Lett. 1, 49–51 (1982)MathSciNetCrossRefMATHGoogle Scholar
- 22.Leighton, F., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. Journal of the ACM 46, 787–832 (1999)MathSciNetCrossRefMATHGoogle Scholar
- 23.Makedon, F., Sudborough, I.H.: On minimizing width in linear layouts. Discrete Applied Mathematics 23, 243–265 (1989)MathSciNetCrossRefMATHGoogle Scholar
- 24.Monien, B., Sudborough, I.H.: Min cut is np-complete for edge weighted trees. Theoretical Computer Science 58, 209–229 (1988)MathSciNetCrossRefMATHGoogle Scholar
- 25.Mutzel, P.: A Polyhedral Approach to Planar Augmentation and Related Problems. In: Spirakis, P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 494–507. Springer, Heidelberg (1995)CrossRefGoogle Scholar
- 26.Suchan, K., Villanger, Y.: Computing Pathwidth Faster than 2. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 324–335. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 27.Thilikos, D.M., Serna, M.J., Bodlaender, H.L.: Cutwidth ii: Algorithms for partial w-trees of bounded degree. Journal of Algorithms 56, 24–49 (2005)MathSciNetMATHGoogle Scholar
- 28.Yannakakis, M.: A polynomial algorithm for the min cut linear arrangement of trees. Journal of the ACM 32, 950–988 (1985)MathSciNetCrossRefMATHGoogle Scholar
- 29.Yuan, J., Zhou, S.: Optimal labelling of unit interval graphs. Appl. Math. J. Chinese Univ. Ser. B (English edition) 10, 337–344 (1995)MathSciNetCrossRefMATHGoogle Scholar