Advertisement

Simpler Linear-Time Kernelization for Planar Dominating Set

  • Torben Hagerup
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7112)

Abstract

We describe a linear-time algorithm that inputs a planar graph G and outputs a planar graph of size O(k) and with domination number k, where k is the domination number of G, i.e., the size of a smallest dominating set in G. In the language of parameterized computation, the new algorithm is a linear-time kernelization for the NP-complete Planar Dominating Set problem that produces a kernel of linear size. Such an algorithm was previously known (van Bevern et al., these proceedings), but the new algorithm and its analysis are considerably simpler.

Keywords

Planar Graph Kernel Size Domination Number Planar Embedding Radix Sort 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for Dominating Set. J. ACM 51(3), 363–384 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    van Bevern, R., Hartung, S., Kammer, F., Niedermeier, R., Weller, M.: Linear-time computation of a linear problem kernel for Dominating Set on planar graphs. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 194–206. Springer, Heidelberg (2012)Google Scholar
  3. 3.
    Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (Meta) kernelization. In: FOCS, pp. 629–638. IEEE Computer Society (2009)Google Scholar
  4. 4.
    Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization: Lower bounds and upper bounds on kernel size. SIAM J. Comput. 37(4), 1077–1106 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Guo, J., Niedermeier, R.: Linear problem kernels for NP-hard problems on planar graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 375–386. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Jansen, B.: Kernelization for Maximum Leaf Spanning Tree with positive vertex weights. In: Calamoneri, T., Díaz, J. (eds.) CIAC 2010. LNCS, vol. 6078, pp. 192–203. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Kammer, F.: A linear-time algorithm to find a kernel for the Rooted Leaf Outbranching problem (2011) (manuscript)Google Scholar
  8. 8.
    Kloks, T., Lee, C.M., Liu, J.: New algorithms for k-face cover, k-feedback vertex set, and k-disjoint cycles on plane and planar graphs. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 282–295. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)CrossRefzbMATHGoogle Scholar
  10. 10.
    Nishizeki, T., Chiba, N.: Planar Graphs: Theory and Algorithms. Dover Publications, Inc., Mineola (1988)zbMATHGoogle Scholar
  11. 11.
    Protti, F., da Silva, M.D., Szwarcfiter, J.L.: Applying modular decomposition to parameterized cluster editing problems. Theory Comput. Syst. 44(1), 91–104 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Torben Hagerup
    • 1
  1. 1.Institut für InformatikUniversität AugsburgAugsburgGermany

Personalised recommendations