Advertisement

Kernel Bounds for Path and Cycle Problems

  • Hans L. Bodlaender
  • Bart M. P. Jansen
  • Stefan Kratsch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7112)

Abstract

Connectivity problems like k-Path and k-Disjoint Paths relate to many important milestones in parameterized complexity, namely the Graph Minors Project, color coding, and the recent development of techniques for obtaining kernelization lower bounds. This work explores the existence of polynomial kernels for various path and cycle problems, by considering nonstandard parameterizations. We show polynomial kernels when the parameters are a given vertex cover, a modulator to a cluster graph, or a (promised) max leaf number. We obtain lower bounds via cross-composition, e.g., for Hamiltonian Cycle and related problems when parameterized by a modulator to an outerplanar graph.

Keywords

Hamiltonian Cycle Vertex Cover Hamiltonian Path Polynomial Kernel Disjoint Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Narrow sieves for parameterized paths and packings. CoRR, abs/1007.1161 (2010)Google Scholar
  3. 3.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new technique for kernelization lower bounds. In: Proc. 28th STACS, pp. 165–176 (2011)Google Scholar
  5. 5.
    Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernel bounds for path and cycle problems. CoRR, abs/1106.4141 (2011)Google Scholar
  6. 6.
    Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel Bounds for Disjoint Cycles and Disjoint Paths. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 635–646. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Chen, J., Lu, S., Sze, S.-H., Zhang, F.: Improved algorithms for path, matching, and packing problems. In: Proc. 18th SODA, pp. 298–307 (2007)Google Scholar
  8. 8.
    Chen, Y., Flum, J., Müller, M.: Lower bounds for kernelizations and other preprocessing procedures. Theory Comput. Syst. 48(4), 803–839 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Kernelization Hardness of Connectivity Problems in 2-Degenerate Graphs. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 147–158. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through Colors and IDs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Downey, R., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  12. 12.
    Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fellows, M.R., Lokshtanov, D., Misra, N., Mnich, M., Rosamond, F.A., Saurabh, S.: The complexity ecology of parameters: An illustration using bounded max leaf number. Theory Comput. Syst. 45(4), 822–848 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer-Verlag New York, Inc. (2006)Google Scholar
  15. 15.
    Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. J. Comput. Syst. Sci. 77(1), 91–106 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  17. 17.
    Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38(1), 31–45 (2007)CrossRefGoogle Scholar
  18. 18.
    Hermelin, D., Kratsch, S., Soltys, K., Wahlström, M., Wu, X.: Hierarchies of inefficient kernelizability. CoRR, abs/1110.0976 (2011)Google Scholar
  19. 19.
    Kleitman, D.J., West, D.B.: Spanning trees with many leaves. SIAM J. Discret. Math. 4(1), 99–106 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Divide-and-Color. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 58–67. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J. Comb. Theory, Ser. B 63(1), 65–110 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Scott, J., Ideker, T., Karp, R.M., Sharan, R.: Efficient algorithms for detecting signaling pathways in protein interaction networks. Journal of Computational Biology 13(2), 133–144 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hans L. Bodlaender
    • 1
  • Bart M. P. Jansen
    • 1
  • Stefan Kratsch
    • 1
  1. 1.Utrecht UniversityUtrechtThe Netherlands

Personalised recommendations