Applications of Piezoelectricity in Nanomedicine

  • Gianni Ciofani
  • Serena Danti
  • Leonardo Ricotti
  • Delfo D’Alessandro
  • Stefania Moscato
  • Virgilio Mattoli
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)


In this Chapter, recent results about studies of interactions between piezoelectric nanoparticles and living systems will be discussed. As extremely innovative materials, great importance is devoted to the investigations of their stabilisation in physiological environments and to their biocompatibility. Applications as drug carriers and nanovectors will be thereafter described, and special attention will be dedicated to tissue engineering applications. Finally, preliminary results achieved by our group on “wireless” cell stimulation will be approached.


Deep Brain Stimulation Boron Nitride Second Harmonic Generation Barium Titanate H9C2 Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gao, J., Xu, B.: Applications of nanomaterials inside cells. Nano Today 4, 37–51 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Whitesides, G.M.: The “right” size in nanobiotechnology. Nat. Biotechnol. 21, 1161–1165 (2003)CrossRefGoogle Scholar
  3. 3.
    Mann, S.: Life as a nanoscale phenomenon. Angew Chem. Int. Edit. 47, 5306–5320 (2008)CrossRefGoogle Scholar
  4. 4.
    Zaveri, T.D., Dolgova, N.V., Chu, B.H., et al.: Contributions of sur-face topography and cytotoxicity to the macrophage response to zinc oxide nanorods. Biomaterials 31, 2999–3007 (2010)CrossRefGoogle Scholar
  5. 5.
    Ciofani, G., Ricotti, L., Danti, S., et al.: Investigation of interac-tions between poly-L-lysine-coated boron nitride nanotubes and C2C12 cells: up-take, cytocompatibility and differentiation. Int. J. Nanomed. 5, 285–298 (2010)CrossRefGoogle Scholar
  6. 6.
    Ciofani, G., Danti, S., D’Alessandro, D., et al.: Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation. ACS Nano 4, 6267–6277 (2010)CrossRefGoogle Scholar
  7. 7.
    Chen, X., Wu, P., Rousseas, M., Okawa, D., et al.: Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J. Am. Chem. Soc. 131, 890–891 (2009)CrossRefGoogle Scholar
  8. 8.
    Horváth, L., Magrez, A., Golberg, D., et al.: In vitro investigation of the cellular toxicity of boron nitride nanotubes. ACS Nano 5, 3800–3810 (2011)CrossRefGoogle Scholar
  9. 9.
    Zhi, C., Bando, Y., Tang, C., et al.: Perfectly dissolved boron nitride nanotubes due to polymer wrapping. J. Am. Chem. Soc. 127, 15996–15997 (2005)CrossRefGoogle Scholar
  10. 10.
    Ciofani, G., Danti, S., D’Alessandro, D., et al.: Barium titanate nanoparticles: highly cytocompatible dispersions in glycol-chitosan and doxorubicin complexes for cancer therapy. Nanoscale Res. Lett. 5, 1093–1101 (2010)CrossRefGoogle Scholar
  11. 11.
    Deng, X., Luan, Q., Chen, W., et al.: Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology 20, 115101 (2009)CrossRefGoogle Scholar
  12. 12.
    Ostrovsky, S., Kazimirsky, G., Gedanken, A., et al.: Selective cy-totoxic effect of ZnO nanoparticles on glioma cells. Nano. Res. 2, 882–890 (2009)CrossRefGoogle Scholar
  13. 13.
    Taccola, L., Raffa, V., Riggio, C., et al.: Zinc oxide nanoparticles as selective killers of proliferating cells. Int. J. Nanomed. 6, 1129–1140 (2011)Google Scholar
  14. 14.
    Kim, J.S., Park, W.I., Lee, C.H., et al.: ZnO nanorod biosensor for highly sensitive detection of specific protein binding. J. Korean Phys. Soc. 4, 1635–1639 (2006)Google Scholar
  15. 15.
    Adams, L.K., Lyon, D.Y., Alvarez, P.J.: Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 40, 3527–3532 (2006)CrossRefGoogle Scholar
  16. 16.
    Brayner, R., Ferrari-Iliou, R., Brivois, N., et al.: Toxicological impact studies based on escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6, 866–870 (2006)CrossRefGoogle Scholar
  17. 17.
    Zhang, L., Jiang, Y., Ding, Y., et al.: Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart Res. 9, 479–489 (2007)CrossRefGoogle Scholar
  18. 18.
    Gojova, A., Guo, B., Kota, R.S., et al.: Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ. Health Perspect 115, 403–409 (2007)CrossRefGoogle Scholar
  19. 19.
    Jeng, H.A., Swanson, J.: Toxicity of metal oxide nanoparticles in mammalian cells. J. Environ. Sci. Health A 41, 2699–2711 (2006)Google Scholar
  20. 20.
    Brunner, T.J., Wick, P., Manser, P., et al.: In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol. 40, 4374–4381 (2006)CrossRefGoogle Scholar
  21. 21.
    Dechsakulthorn, F., Hayes, A., Bakand, S., et al.: In vitro cytotoxicity assessment of selected nanoparticles using human skin fibro-blasts. AATEX 14, 397–400 (2007)Google Scholar
  22. 22.
    Lin, W.S., Xu, Y., Huang, C.C., et al.: Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. J. Nanopart Res. 11, 25–39 (2008)CrossRefGoogle Scholar
  23. 23.
    Zheng, Y., Li, R., Wang, Y.: In vitro and in vivo biocompatibility studies of ZnO nanoparticles. Int. J. Mod. Phys. B 23, 1566–1571 (2009)CrossRefGoogle Scholar
  24. 24.
    Reddy, K.M., Feris, K., Bell, J., et al.: Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 90, 213902 (2007)CrossRefGoogle Scholar
  25. 25.
    Hanley, C., Layne, J., Punnoose, A., et al.: Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology 19, 295103 (2008)CrossRefGoogle Scholar
  26. 26.
    Block, M.L., Wu, X., Pei, Z., et al.: Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase. FASEB J. 18, 1618–1620 (2004)Google Scholar
  27. 27.
    Peters, A., Veronesi, B., Calderon-Garciduenas, L., et al.: Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part Fibre Toxicol. 3, 1–13 (2006)CrossRefGoogle Scholar
  28. 28.
    Persson, E., Henriksson, J., Tallkvist, J., et al.: Transport and subcellular distribution of intranasally administered zinc in the olfactory system of rats and pikes. Toxicology 191, 97–108 (2003)CrossRefGoogle Scholar
  29. 29.
    Takeda, A., Ohnuma, M., Sawashita, J., et al.: Zinc transport in the rat olfactory system. Neurosci. Lett. 225, 69–71 (1997)CrossRefGoogle Scholar
  30. 30.
    Daniels, W.M.U., Hendricks, J., Salie, R., et al.: A mechanism for zinc toxicity in neuroblastoma cells. Metab. Brain Dis. 19, 79–88 (2004)CrossRefGoogle Scholar
  31. 31.
    Xia, T., Kovochich, M., Liong, M., et al.: Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2, 2121–2134 (2008)CrossRefGoogle Scholar
  32. 32.
    Li, Z., Yang, R., Yu, M., et al.: Cellular level biocompatibility and biosafety of ZnO nanowires. J. Phys. Chem. C 112, 20114–20117 (2008)CrossRefGoogle Scholar
  33. 33.
    Ciofani, G., Danti, S., Moscato, S., et al.: Preparation of stable dispersion of barium titanate nanoparticles: potential applications in biomedicine. Colloid. Surface B 76, 535–543 (2010)CrossRefGoogle Scholar
  34. 34.
    Hsieh, C.L., Grange, R., Pua, Y., et al.: Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes. Biomaterials 31, 2272–2277 (2010)CrossRefGoogle Scholar
  35. 35.
    Liao, L.B., Zhou, H.Y., Xiao, X.M.: Spectroscopic and viscosity study of doxorubicin interaction with DNA. Mol. Struct. 749, 108–113 (2005)CrossRefGoogle Scholar
  36. 36.
    Kremer, L.C., van Dalen, E.C., Offringa, M., et al.: Frequency and risk factors of anthracycline-induced clinical heart failure in chil-dren: a systematic review. Ann. Oncol. 13, 503–512 (2002)CrossRefGoogle Scholar
  37. 37.
    Longhi, A., Ferrari, S., Bacci, G., et al.: Long-term follow-up of patients with doxorubicin-induced cardiac toxicity after chemother-apy for osteosarcoma. Anti-Cancer Drug 18, 737–744 (2007)CrossRefGoogle Scholar
  38. 38.
    Elliott, P.: Pathogenesis of cardiotoxicity induced by anthraciclines. Semin. Oncol. 33, 2–7 (2006)CrossRefGoogle Scholar
  39. 39.
    Anderson, A.B., Gergen, J., Arriaga, E.A.: Detection of doxorubicin and metabolites in cell extracts and in single cells by capillary electrophoresis with laser-induced fluorescence detection. J. Chromatogr. B 769, 97–106 (2002)CrossRefGoogle Scholar
  40. 40.
    Lorusso, D., Di Stefano, A., Carone, V., et al.: Pegylated lipo-somal doxorubicin-related palmar-plantar erythrodysesthesia (“hand-foot” syndrome). Ann. Onc. 18, 1159–1164 (2007)CrossRefGoogle Scholar
  41. 41.
    Dorfman, H.D., Czerniak, B.: Bone cancers. Cancer 75, 203–210 (1995)CrossRefGoogle Scholar
  42. 42.
    Kostarelos, K.: The long and short of carbon nanotube toxicity. Nature Biotechnol. 26, 774–776 (2008)CrossRefGoogle Scholar
  43. 43.
    Ciofani, G., Raffa, V., Menciassi, A., et al.: Boron nitride nanotubes: an innovative tool for nanomedicine. Nano Today 4, 8–10 (2009)CrossRefGoogle Scholar
  44. 44.
    Noda, T., Fujino, T., Mie, M., et al.: Transduction of MyoD protein into myoblasts induces myogenic differentiation without addition of protein transduction domain. Biochem. Bioph. Res. Commun. 382, 473–477 (2009)CrossRefGoogle Scholar
  45. 45.
    Kanisicak, O., Mendez, J.J., Yamamoto, S., et al.: Progenitors of skeletal muscle satellite cells express the muscle determination gene, MyoD. Dev. Biol. 332, 131–141 (2009)CrossRefGoogle Scholar
  46. 46.
    Suzuki, K., Brand, N.J., Allen, S., et al.: Overexpression of con-nexin 43 in skeletal myoblasts: relevance to cell transplantation to the heart. J. Thorac. Cardiovasc. Surg. 122, 759–766 (2001)CrossRefGoogle Scholar
  47. 47.
    Ciofani, G., Danti, S., D’Alessandro, D., et al.: Assessing cytotoxicity of boron nitride nanotubes: interference with the MTT assay. Biochem. Bioph. Res. Commun. 394, 405–411 (2010)CrossRefGoogle Scholar
  48. 48.
    Belyanskaya, L., Manser, P., Spohn, P., et al.: The reliability and limits of the MTT reduction assay for carbon nanotubes–cell interaction. Carbon 45, 2643–2648 (2007)CrossRefGoogle Scholar
  49. 49.
    Woerle-Knirsch, J.M., Pulskamp, K., Krug, H.F.: Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Letters 6, 1261–1268 (2006)CrossRefGoogle Scholar
  50. 50.
    Lanza, R.P., Langer, R.S., Vacanti, J.: Principles of tissue engineering. Elsevier Academic Press, London (2007)Google Scholar
  51. 51.
    Titushkin, I., Sun, S., Shin, J., et al.: Physicochemical control of adult stem cell differentiation: shedding light on potential molecular mechanism. J. Biomed. Biotech. 743476 (2010)Google Scholar
  52. 52.
    Ebersole, R.C., Foss, R.P., Ward, M.D.: Piezoelectric cell growth sensor. Nat. Biotech. 9, 450–454 (1991)CrossRefGoogle Scholar
  53. 53.
    Turner, C.H.: Three rules for bone adaptation to mechanical stimuli. Bone 23, 399–407 (1998)CrossRefGoogle Scholar
  54. 54.
    Cowin, S., Weinbaum, S., Zeng, Y.: A case for bone canaliculi as the anatomical site of strain generated potentials. J. Biomech. 28, 1281–1297 (1995)CrossRefGoogle Scholar
  55. 55.
    Baxter, F.R., Bowen, C.R., Turner, I.G., et al.: Electrically active bioceramics: a review of interfacial responses. Ann. Biomed. Eng. 38, 2079–2092 (2010)CrossRefGoogle Scholar
  56. 56.
    Beloti, M.M., de Oliveira, P.T., Gimenes, R., et al.: In vitro bio-compatibility of a novel membrane of the composite poly(vinylidene-trifluoroethylene)/barium titanate. J. Biomed. Mat. Res. A 79, 282–288 (2006)CrossRefGoogle Scholar
  57. 57.
    Baxter, F.R., Turner, I.G., Bowen, C.R., et al.: An in vitro study of electrically active hydroxyapatite-barium titanate ceramics using Saos-2 cells. J. Mater. Sci. Mater. Med. 20, 1697–1708 (2009)CrossRefGoogle Scholar
  58. 58.
    Li, J., Qu, Y., Zhang, X., et al.: Bioactive nano-titania ceramics with biomechanical compatibility prepared by doping with piezoelectric BaTiO3. Acta. Biomater. 5, 2189–2195 (2009)CrossRefGoogle Scholar
  59. 59.
    Park, J.B., von Recum, A.F., Kenner, G.H., et al.: Piezoelectric ceramic implants: a feasibility study. J. Biomed. Mater Res. 14, 269–277 (1980)CrossRefGoogle Scholar
  60. 60.
    Marino, A., Rosson, J., Gonzalez, E., et al.: Quasi-static charge interactions in bone. J. Electrostatics 21, 347–360Google Scholar
  61. 61.
    Feng, J., Yuan, H.P., Zhang, X.D.: Promotion of osteogenesis by a piezoelectric biological ceramic. Biomaterials 18, 1531–1534 (1997)CrossRefGoogle Scholar
  62. 62.
    Gimenes, R., Zaghete, M.A.: Composites PVDF-TrFE/BT used as bioactive membranes for enhancing bone regeneration. In: Proceedings of the SPIE 5385, pp. 539–547 (2004)Google Scholar
  63. 63.
    Mendenhall, J., Li, D., Frey, M., et al.: Piezoelectric poly(3-hydroxybutyrate)-poly(lactic acid) three dimensional scaffolds for bone tissue engineering. In: Proceedings of the Materials Research Society Symposium, vol. 1025, pp. 8–13 (2008)Google Scholar
  64. 64.
    Lahiri, D., Rouzaud, F., Richard, T., et al.: Boron nitride nanotube reinforced polylactide-polycaprolactone copolymer composite: mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro. Acta Biomater. 6, 3524–3533 (2010)CrossRefGoogle Scholar
  65. 65.
    Darling, E.M., Athanasiou, K.A.: Biomechanical strategies for articular cartilage regeneration. Ann. Biomed. Eng. 31, 1114–1124 (2003)CrossRefGoogle Scholar
  66. 66.
    Schulz, R.M., Bader, A.: Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur. Biophys. J. 36, 539–568 (2007)CrossRefGoogle Scholar
  67. 67.
    Fini, M., Giavaresi, G., Carpi, A., et al.: Effects of pulsed electromagnetic fields on articular hyaline cartilage: Review of experimental and clinical studies. Biomed. Pharmacother. 59, 388–394 (2005)CrossRefGoogle Scholar
  68. 68.
    Mitani, G., Sato, M., Lee, J.I.K., et al.: The properties of bioengineered chondrocyte sheets for cartilage regeneration. BCM Biotech. 9, 17–28 (2009)Google Scholar
  69. 69.
    Lan, M.A., Gersbach, C.A., Michael, K.E., et al.: Myoblast proliferation and differentiation on fibronectin-coated self assembled monolayers presenting different surface chemistries. Biomaterials 26, 4523–4531 (2005)CrossRefGoogle Scholar
  70. 70.
    Engler, A.J., Griffin, M.A., Sen, S., et al.: Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166, 877–887 (2004)CrossRefGoogle Scholar
  71. 71.
    Huang, N.F., Patel, S., Thakar, R.G., et al.: Myotube assembly on nanofibrous and micropatterned polymers. Nano Lett. 6, 537–542 (2006)CrossRefGoogle Scholar
  72. 72.
    Marloes, L.P., Langelaan, K.J.M., Boonen, R.B.P., et al.: Meet the new meat: tissue engineered skeletal muscle. Trends Food Sci. Tech. 21, 59–66 (2010)CrossRefGoogle Scholar
  73. 73.
    Vandenburgh, H.H., Karlisch, P.: Longitudinal growth of skeletal myotubes in vitro in a new horizontal mechanical cell stimulator. In Vitro Cell Dev. Biol. 25, 607–616 (1989)CrossRefGoogle Scholar
  74. 74.
    Tatsumi, R., Sheehan, S.M., Iwasaki, H., et al.: Mechanical stretch induces activation of skeletal muscle satellite cells in vitro. Exp. Cell Res. 267, 107–114 (2001)CrossRefGoogle Scholar
  75. 75.
    Kook, S.H., Lee, H.J., Chung, W.T., et al.: Cyclic mechanical stretch stimulates the proliferation of C2C12 myoblasts and inhibits their differentiation via prolonged activation of p38 MAPK. Mol. Cell 25, 479–486 (2008)Google Scholar
  76. 76.
    Bach, A.D., Beier, J.P., Stern-Stater, J., et al.: Skeletal muscle tissue engineering. J. Cell Mol. Med. 8, 413–422 (2004)CrossRefGoogle Scholar
  77. 77.
    Ciofani, G., Ricotti, L., Menciassi, A., et al.: Preparation, characterization and in vitro testing of poly(lactic-co-glycolic) acid / barium titanate nanoparticle composites for enhanced cellular proliferation. Biomed. Microdevices 13, 255–266 (2011)CrossRefGoogle Scholar
  78. 78.
    Weber, N., Lee, Y.S., Shanmugasundaram, S., et al.: Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds. Acta Biomat. 6, 3550–3556 (2010)CrossRefGoogle Scholar
  79. 79.
    Mackinnon, S.E., Dellon, A.L.: Surgery of the peripheral nerve. Thieme Medical Publishers, New York (1988)Google Scholar
  80. 80.
    Schmidt, C.E., Leach, J.B.: Neural tissue engineering: strategies for repair and regeneration. Annu. Rev. Biomed. Eng. 5, 293–347 (2003)CrossRefGoogle Scholar
  81. 81.
    Valentini, R.F., Vargo, T.G., Gardella Jr., J.A., et al.: Patterned neuronal attachment and outgrowth on surface modified, electrically charged fluoropolymer substrates. J. Biomater. Sci. Polym. Ed. 5, 13–36 (1993)CrossRefGoogle Scholar
  82. 82.
    Seil, J.T., Webster, T.J.: Electrically active nanaomaterials as improved neural tissue regeneration scaffolds. WIREs Nanomed. Nanobiotech. 2, 635–647 (2010)CrossRefGoogle Scholar
  83. 83.
    Aebischer, P., Valentini, R.F., Dario, P., et al.: Piezoelectric guidance channels enhance regeneration in the mouse sciatic nerve after axotomy. Brain Res. 436, 165–168 (1987)CrossRefGoogle Scholar
  84. 84.
    Seil, J.T., Webster, T.J.: Decreased astroglial cell adhesion and proliferation on zinc oxide nanoparticle polyurethane composites. Int. J. Nanomed. 3, 523–531 (2008)Google Scholar
  85. 85.
    Lee, Y.S., Arinzeh, T.L.: Electrospun nanofibrous materials for neural tissue engineering. Polymers 3, 413–426 (2011)CrossRefGoogle Scholar
  86. 86.
    Cellot, G., Cilia, E., Cipollone, S., et al.: Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat. Nanotechnol. 4, 126–133 (2009)CrossRefGoogle Scholar
  87. 87.
    Gimsa, J., Habel, B., Schreiber, U., et al.: Choosing electrodes for deep brain stimulation experiments-electrochemical considerations. J. Neurosci. Meth. 142, 251–265 (2005)CrossRefGoogle Scholar
  88. 88.
    Adams, C., Mathieson, K., Gunning, D., et al.: Development of flexible arrays for in vivo neuronal recording and stimulation. Nucl. Instrum. Meth. A 546, 154–159 (2005)CrossRefGoogle Scholar
  89. 89.
    Valls-Solé, J., Compta, Y., Costa, J., et al.: Human central nervous system circuits examined through the electrodes implanted for deep brain stimulation. Clin. Neurophysiol. 119, 1219–1231 (2008)CrossRefGoogle Scholar
  90. 90.
    Albert, G.C., Cook, C.M., Prato, F.S., et al.: Deep brain stimulation, vagal nerve stimulation and transcranial stimulation: an overview of stimulation parameters and neurotransmitter release. Neurosci. Biobehav. R 33, 1042–1060 (2009)CrossRefGoogle Scholar
  91. 91.
    Dai, Y., Guo, E., Zhang, Z., et al.: Electric-field-induced deformation in boron nitride nanotubes. J. Phys. D Appl. Phys. 42, 85403 (2009)CrossRefGoogle Scholar
  92. 92.
    Bai, X., Golberg, D., Bando, Y., et al.: Deformation-driven electrical transport of individual boron nitride nanotubes. Nano Letters 7, 632–637 (2007)CrossRefGoogle Scholar
  93. 93.
    Kimura, K., Yanagida, Y., Haruyama, T., et al.: Electrically in-duced neurite outgrowth of PC12 cells on the electrode surface. Med. Biol. Eng. Comput. 36, 493–498 (1998)CrossRefGoogle Scholar
  94. 94.
    Manivannan, S., Terakawa, S.: Rapid filopodial sprouting induced by electrical stimulation in nerve terminals. Jpn. J. Physiol. 43, 217–220 (1993)Google Scholar
  95. 95.
    McClellan, A.D., Kovalenko, M.O., Benes, J.A., et al.: Spinal cord injury induces changes in electrophysiological properties and ion channel expression of reticulospinal neurons in larval lamprey. J. Neurosci. 28, 650–659 (2008)CrossRefGoogle Scholar
  96. 96.
    Udina, E., Furey, M., Busch, S., et al.: Electrical stimulation of intact peripheral sensory axons in rats promotes outgrowth of their central projections. Exp. Neurol. 210, 238–247 (2008)CrossRefGoogle Scholar
  97. 97.
    Wood, M., Willits, R.K.: Short-duration, DC electrical stimulation increases chick embryo DRG neurite outgrowth. Bioelectromagnetics 27, 328–331Google Scholar
  98. 98.
    Danti, S., Ciofani, G., Moscato, S., et al.: Intracellular nanotransducers for regenerative medicine: in vitro bone formation induced by Boron Nitride Nanotubes (2012) (submitted)Google Scholar
  99. 99.
    Lyons, K.E., Pahwa, R.: Deep brain stimulation in Parkinson’s disease. Curr. Neurol. Neurosci. Rep. 4, 290–295 (2004)CrossRefGoogle Scholar
  100. 100.
    Xu, J., Chen, J.D.Z.: Intestinal electrical stimulation improves delayed gastric emptying and vomiting induced by duodenal distension in dogs. Neurogastroent Motil. 20, 236–242 (2008)CrossRefGoogle Scholar
  101. 101.
    Ross, K.B., Dubin, S., Nigroni, P., et al.: Programmed stimulation for simulation of atrial tachyarrythmias. Biomedical Sciences Instrumentation 33, 25–29 (1997)Google Scholar
  102. 102.
    Gordon, T., Brushart, T.M., Amirjani, N., et al.: The potential of electrical stimulation to promote functional recovery after peripheral nerve injury - Comparisons between rats and humans. Acta Neurochir. 100, 3–11 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-VerlagBerlin Heidelberg 2012

Authors and Affiliations

  • Gianni Ciofani
    • 1
  • Serena Danti
    • 2
  • Leonardo Ricotti
    • 3
  • Delfo D’Alessandro
    • 2
  • Stefania Moscato
    • 4
  • Virgilio Mattoli
    • 1
  1. 1.Center for MicroBioRobotics @SSSAIstituto Italiano di TecnologiaPisaItaly
  2. 2.Department of NeurosciencesUniversity of PisaPisaItaly
  3. 3.Scuola Superiore Sant’AnnaThe BioRobotics InstitutePisaItaly
  4. 4.Department of Human Morphology & Applied BiologyUniversity of PisaPisaItaly

Personalised recommendations