Skip to main content

Piezoelectricity and Ferroelectricity in Biomaterials: From Proteins to Self-assembled Peptide Nanotubes

  • Chapter

Part of the Nanomedicine and Nanotoxicology book series (NANOMED)

Abstract

Piezoelectricity is one of the common ferroelectric material properties, along with pyroelectricity, optical birefringence phenomena, etc. There has been widespread observation of piezoelectric and ferroelectric phenomena in many biological systems and molecules, and these are referred to as biopiezoelectricity and bioferroelectricity. Investigations have been made of these properties in biological and organic macromolecular systems on the nanoscale, by techniques such as atomic force microscopy (AFM) and piezoresponse force microscopy (PFM). This chapter presents a short overview of the main issues of piezoelectricity and ferroelectricity, and their manifestation in organic and biological objects, materials and molecular systems. As a showcase of novel biopiezomaterials, the investigation of diphenylalanine (FF) peptide nanotubes (PNTs) is described in more detail. FF PNTs present a unique class of self-assembled functional biomaterials, owing to a wide range of useful properties, including nanostructural variability, mechanical rigidity and chemical stability. The discovery of strong piezoactivity and polarization in aromatic dipeptides [ACS Nano 4, 610, 2010] opened up a new perspective for their use as nanoactuators, nanomotors and molecular machines as well for possible biomedical applications.

Keywords

  • Second Harmonic Generation
  • Piezoelectric Property
  • Amyloid Fibril
  • Cerebral Amyloid Angiopathy
  • Ferroelectric Property

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-28044-3_7
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-28044-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lines, M.E., Glass, A.M.: Principles and Applications of Ferroelectrics and Related Materials. Clarendon Press, Oxford (1977)

    Google Scholar 

  2. Smolenskii, G.A., et al. (eds.): Physics of Ferroelectric Phenomena: Ferroelectrics and related materials (1985) (Nauka, Leningrad, in Russian; Gordon and Breach, New York, in English)

    Google Scholar 

  3. Goodby, J.W., Blinc, R., Clark, N.A., Lagerwall, S.T., Osipov, M.A., Pikin, S.A., Sakurai, T., Yoshino, K., Zeks, B.: Ferroelectric liquid crystals: Principles, properties and applications. Gordon and Breach, Philadelphia (1991)

    Google Scholar 

  4. Fukada, E.: Vibrational study of the wood used for the sound boards of pianos. Nature 166, 772–773 (1950)

    CrossRef  Google Scholar 

  5. Fukada, E.: Piezoelectricity of wood. J. Phys. Soc. Jpn. 10, 149–154 (1955)

    CrossRef  Google Scholar 

  6. Fukada, E., Yasuda, I.: On the piezoelectric effect of bone. J. Phys. Soc. Jpn. 12, 1158–1162 (1957)

    CrossRef  Google Scholar 

  7. Fukada, E., Yasuda, I.: Piezoelectric effects in collagen. Jpn. J. Appl. Phys. 3, 117–121 (1964)

    CrossRef  Google Scholar 

  8. Leuchtag, H.R.: Voltage-Sensitive Ion Channels: Biophysics of Molecular Excitability. Springer, Dordrecht (2008)

    CrossRef  MATH  Google Scholar 

  9. Leuchtag, H. R., Bystrov, V. S., Theoretical models of conformational transitions and ion conduction in voltage-dependent ion channels: Bioferroelectricity and superionic conduction. Ferroelectrics 220 (3-4), 157-204(1999)

    Google Scholar 

  10. Amdursky, N., Beker, P., Schklovsky, J., Gazit, E., Rosenman, G.: Ferroelectric and related phenomena in biological and bioinspired nanostructures. Ferroelectrics 399, 107–117 (2010)

    CrossRef  Google Scholar 

  11. Athenstaedt, H.: Permanent Longitudinal Electric Polarisation and Pyroelectric Behaviour of Collagenous Structures and Nervous Tissue in Man and other Vertebrates. Nature 228, 830–834 (1970)

    CrossRef  Google Scholar 

  12. Athenstaedt, H.: Pyroelectric and piezoelectric properties of vertebrates. Ann. NY Acad. Sci. 238, 68–94 (1974)

    CrossRef  Google Scholar 

  13. Lang, S.B.: Pyroelectricity: Occurrence in biological materials and possible physiological implications. Ferroelectrics 34(1), 3–9 (1981)

    CrossRef  Google Scholar 

  14. Athenstaedt, H.: Pyroelectric sensors of organisms. Ferroelectrics 11(1), 365–369 (1976)

    CrossRef  Google Scholar 

  15. Fukada, E.: Piezoelectric properties of biological polymers. Quart. Rev. Biophys. 16(1), 59–87 (1983)

    CrossRef  Google Scholar 

  16. Lang, S.B., Marino, A.A., Berkovic, G., Fowler, M., Abreo, K.D.: Piezoelectricity in the human pineal gland. Bioelectrochem. Bioenerg. 41, 191–195 (1996)

    CrossRef  Google Scholar 

  17. Lang, S.B.: Pyroelectric effect in bone and tendon. Nature 212, 704–705 (1966)

    CrossRef  Google Scholar 

  18. Lang, S.B.: Thermal expansion coefficients and primary and secondary pyroelectric coefficients of animal bone. Nature 224, 798–799 (1969)

    CrossRef  Google Scholar 

  19. Lang, S.B.: Piezoelectricity, pyroelectricity and ferroelectricity in biomaterials - speculation on their biological significance. IEEE Trns. Dielectr. Electr. Insul. 7, 466–473 (2000)

    CrossRef  Google Scholar 

  20. Kryszewski, M.: Fifty years of study of the piezoelectric properties of macromolecular structured biological materials. Acta Phys. Pol. A 105, 389–408 (2004)

    Google Scholar 

  21. Gruverman, A., Rodriguez, B.J., Kalinin, S.V.: Electromechanical Behavior in Biological Systems at the Nanoscale. Springer, New York (2007)

    Google Scholar 

  22. Athenstaedt, H.: Ferroelektrische und piezoelektrische Eigenschaften biologisch bedeutsamer Stoffe. Naturwissenschaften 48(13), 465–472 (1961)

    CrossRef  Google Scholar 

  23. Fröhlich, H.: Long range coherence in biological systems. Riv. del Nuovo Cimento 7, 399 (1977)

    CrossRef  Google Scholar 

  24. von Hippel, A.R.: Proceedings, Second International Meeting on Ferroelectricity. J. Phys. Soc. Japan 28(suppl.), 1 (1970)

    Google Scholar 

  25. Lemanov, V.V., Popov, S.N., Pankova, G.A.: Piezoelectric properties of crystals of some protein aminoacids and their related compounds. Phys. Sol. Stat. 44, 1929–1935 (2002)

    CrossRef  Google Scholar 

  26. Lemanov, V.V., Popov, S.N., Pankova, G.A.: Protein amino acid crystals: Structure, symmetry, physical properties. Ferroelectrics 285, 581–590 (2003)

    Google Scholar 

  27. Hastings, G.W., Elmessiery, M.A., Rakowski, S.: Mechano-electrical properties of bone. Biomaterials 2, 225–233 (1981)

    CrossRef  Google Scholar 

  28. Halperin, C., Mutchnik, S., Agronin, A., Molotskii, M., Urenski, P., Salai, M., Rosenman, G.: Piezoelectric Effect in Human Bones Studied in Nanometer Scale. Nano Lett. 4(7), 1253–1256 (2004)

    CrossRef  Google Scholar 

  29. Minary-Jolandan, M., Yu, M.F.: Nanoscale characterization of isolated individual Type I collagen fibrils: Polarisation and piezoelectricity. Nanotechnology 20, 85706 (2009)

    CrossRef  Google Scholar 

  30. Kholkin, A., Amdursky, N., Bdikin, I., Gazit, E., Rosenman, G.: Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano 4(2), 610–614 (2010)

    CrossRef  Google Scholar 

  31. Newnham, R.E., Sundar, V., Yimnirun, R., Su, J., Zhang, Q.M.: Electrostriction: Nonlinear Electromechanical Coupling in Solid Dielectrics. J. Phys. Chem. B 101, 10141–10150 (1997)

    CrossRef  Google Scholar 

  32. Kholkin, A.L., Brooks, K.G., Setter, N.: Electromechanical properties of SrBi2Ta2O9 thin films. Appl. Phys. Lett. 71(14) (1997)

    Google Scholar 

  33. Beresnev, L.A., Blinov, L.M., Kovshev, E.I.: Dokl. Biophys. 265, 111 (1982)

    Google Scholar 

  34. Beresnev, L.A., Pikin, S.A., Haase, W.: Ferroelectric Polymers. Condensed Matter News 1(8), 13 (1992)

    Google Scholar 

  35. Tasaki, I., Byrne, P.M.: The Origin of Rapid Changes in Birefringence, Light Scattering and Dye Absorbance Associated with Excitation of Nerve Fibers. Japanese J. Physiol. 75 (suppl.), S67–S75 (1993)

    Google Scholar 

  36. Tasaki, I.: Evidence for phase transition in nerve fibres, cells and synapses. Ferroelectrics 220, 305–316 (1999)

    CrossRef  Google Scholar 

  37. Bystrov, V.S.: Ferroelectric Liquid Crystal Models of Ion Channels and Gating Phenomena in Biological Membranes. Ferroelectrics Letters 23, 87–93 (1997)

    CrossRef  Google Scholar 

  38. Shirane, K., Tokimoto, T., Kushibe, H.: Physica D 90, 306 (1996)

    CrossRef  MATH  Google Scholar 

  39. Tokimoto, T., Shirane, K., Kushibe, H.: Self-organized chemical model and approaches to membrane excitation. Ferroelectrics 220, 273–290 (1999)

    CrossRef  Google Scholar 

  40. Bystrov, V.S., Lakhno, V.D., Molchanov, A.M.: Ferroelectric-active models of ion channels in biomembranes. J. Theor. Biol. 168, 383–393 (1994)

    CrossRef  Google Scholar 

  41. Gordon, A., Vugmeister, B.E., Rabitz, H., Dorfman, S., Felsteiner, J., Wyder, P.: A ferroelectric model, for the generation and propagation of an action potential and its magnetic field stimulation. Ferroelectrics 220, 291–304 (1999)

    CrossRef  Google Scholar 

  42. Palti, Y., Adelman Jr., W.J.: Measurement of axonal membrane condactances and capacity by means of a varying potential control voltage clamp. J. Memb. Biol. 1, 431–458 (1969)

    CrossRef  Google Scholar 

  43. Leuchtag, H.R.: Fit of the dielectric anomaly of squid axon membrane near heat-block temperature to the ferroelectric Curie-Weiss law. Biophys. Chem. 53, 197–205 (1995)

    CrossRef  Google Scholar 

  44. Ermolina, I., Strinkovski, A., Lewis, A., Feldman, Y.: Observation of Liquid-Crystal-Like Ferroelectric Behavior in a Biological Membrane. J. Phys. Chem. B 105(14), 2673–2676 (2001)

    CrossRef  Google Scholar 

  45. Brown, J.A., Tuszynski, J.A.: A Review of the Ferroelectric Model of Microtubules. Ferroelectrics 220, 141–156 (1999)

    CrossRef  Google Scholar 

  46. Mickey, B., Howard, J.: Rigidity of microtubules is increased by stabilizing agents. J. Cell Biol. 130, 909–917 (1995)

    CrossRef  Google Scholar 

  47. Sataric, M.V., Tuszynski, J.A.: Relationship between the nonlinear ferroelectric and liquid crystal models for microtubules. Phys. Rev. E 67, 11901 (2003)

    CrossRef  Google Scholar 

  48. Tuszynski, J.A., Craddock, T.J.A., Carpenter, E.J.: Bio-Ferroelectricity at the Nanoscale. J. Comp. Theor. Nanoscience 5(10), 2022–2032 (2008)

    CrossRef  Google Scholar 

  49. Tuszynski, J.A., Malinski, W., Carpenter, E.J., Luchko, T., Torin, H.J., Ludena, R.F.: Tubulin electrostatics and isotype specific drug binding. Canadian J. Phys. 86(4), 635–640 (2008)

    CrossRef  Google Scholar 

  50. Hereida, A., Bdikin, I., Kopyl, S., Mishina, E., Semin, S.: Temperature-driven phase Transformation in self-assembled diphenylalanine peptide nanotubes. J. Phys. D: Appl. Phys.: Fast Track Communication 43, 462001 (6 pp) (2010)

    Google Scholar 

  51. Alexe, M., Gruverman, A. (eds.): Nanoscale Characterization of Ferroelectric Materials. Springer, Heidelberg (2004)

    Google Scholar 

  52. Kholkin, A.L., Kalinin, S.V., Roelofs, A., Gruverman, A.: Review of ferroelectric domain imaging by Piezoresponse Force Microscopy. In: Kalinin, S.V., Gruverman, A. (eds.) Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, vol. 1, pp. 173–214. Springer, New York (2007)

    Google Scholar 

  53. Schaap, I.A.T., de Pablo, P.J., Schmidt, C.F.: Resolving the molecular structure of microtubules under physiological conditions with scanning force microscopy. Eur. Biophys. J. 33, 462–467 (2004)

    CrossRef  Google Scholar 

  54. Schaap, I.A.T., et al.: Elastic Response, Buckling, and Instability of Microtubules under Radial Indentation. Biophys. 91, 1521–1531 (2006)

    CrossRef  Google Scholar 

  55. Ghiso, J., Plant, G.T., Levy, E., Wisniewski, T., Baumann, M.H.: C-terminal fragments of α- and β-tubulin form amyloid fibrils in vitro and associate with amyloid deposits of familial cerebral amyloid angiopathy. British type. Biochem. Biophys. Res. Commun. 219, 238–242 (1996)

    Google Scholar 

  56. Kalinin, S.V., Rodriguez, B.J., Shin, J., Jesse, S., Grichko, V., Thundat, T., Baddorf, A.P., Gruverman, A.: Bioelectromechanical imaging by scanning probe microscopy: Galvani’s experiment at the nanoscale. Ultramicroscopy 106, 334–340 (2006)

    CrossRef  Google Scholar 

  57. Kalinin, S.V., Jesse, S., Rodriguez, B.J., Seal, K., Baddorf, A.P., Zhao, T., Chu, Y.H., Ramesh, R., Eliseev, E.A., Morozovska, A.N., Mirman, B., Karapetian, E.: Recent advances in electromechanical imaging on the nanometer scale: Polarisation dynamics in ferroelectrics, biopolymers, and liquid imaging. Jpn. J. Appl. Phys. 46, 5674–5685 (2007)

    CrossRef  Google Scholar 

  58. Safari, A., Akdogan, K. (eds.): Piezoelectric and Acoustic Materials for Transducer Applications. Springer, New York (2008)

    Google Scholar 

  59. Alexe, M., Hesse, D.: Self-assembled nanoscale ferroelectrics. J. Mater. Sci. 41, 1–11 (2006)

    CrossRef  Google Scholar 

  60. Muralt, P.: Ultrasonic Micromotors Based on PZT Thin Films. J. Electroceram. 3, 143–150 (1999)

    CrossRef  Google Scholar 

  61. Polla, D.L., Erdman, A.G., Robbins, W.P., Markus, D.T., Diaz-Diaz, J., Rizq, R., Nam, Y., Brickner, H.T., Wang, A., Krulevitch, P.: Microdevices in medicine. Ann. Rev. Biomed. Eng. 2, 551–576 (2000)

    CrossRef  Google Scholar 

  62. Hong, E., Krishnaswamy, S.V., Freidhoff, C.B.: Micromachined piezoelectric diaphragms actuated by ring shaped interdigitated transducer electrodes. Sens. Actuat. A 119, 520–526 (2005)

    CrossRef  Google Scholar 

  63. Scott, J.: Ferroelectric Memories. Springer, Berlin (2000)

    Google Scholar 

  64. Ghadiri, M.R., Granja, J.R., Milligan, R.A., McRee, D.E., Hazanovich, N.: Self assembling organic nanotubes based on a cyclic peptide architecture. Nature 366, 324327 (1993)

    CrossRef  Google Scholar 

  65. Aggeli, A., Bell, M., Boden, N., Keen, J.N., Knowles, P.F., McLeish, T.C.B., Pitkeathly, M., Radford, S.E.: Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes. Nature 386, 259–262 (1997)

    CrossRef  Google Scholar 

  66. Hartgerink, J.D., Beniash, E., Stupp, S.L.: Self-assembly and mineralization of peptideamphiphile nanofibers. Science 294, 1684–1688 (2001)

    CrossRef  Google Scholar 

  67. Reches, M., Gazit, E.: Casting metal nanowires within discrete self- assembled peptide nanotubes. Science 300, 625–627 (2003)

    CrossRef  Google Scholar 

  68. Zhang, S.: Fabrication of novel biomaterials through molecular self assembly. Nature Biothechnol. 21, 1171–1178 (2003)

    CrossRef  Google Scholar 

  69. Reches, M., Gazit, E.: Controlled patterning of aligned self-assembled peptide nanotubes. Nature Nanotech. 1, 195–200 (2006)

    CrossRef  Google Scholar 

  70. Lovinger, A.J.: Ferroelectric Polymers. Science 220, 1115–1121 (1983)

    CrossRef  Google Scholar 

  71. Naber, R.C.G., Tanase, C., Blom, P.W.M., Gelinck, G.H., Marsman, A.W., Touwslager, F.J., Setayesh, S., Leeuw, D.M.: High-performance solution-processed polymer ferroelectric field-effect transistors. Nature Mater. 4, 243–248 (2005)

    CrossRef  Google Scholar 

  72. Gelinck, G.H., Marsman, A.W., Touwslager, F.J., Setayesh, S., Leeuw, D.M., Naber, R.C.G., Blom, P.W.M.: All-polymer ferroelectric transistors. Appl. Phys. Lett. 87, 092903-3 (2005)

    Google Scholar 

  73. Naber, R.C.G., Boer, B., Blom, P.W.M., Leew, D.M.: Low-voltage polymer field-effect transistors for nonvolatile memories. Appl. Phys. Lett. 87, 203509-3 (2005)

    Google Scholar 

  74. Narayanan, K.N., Bettignies, R., Dabos-Seignon, S., Nunzi, J.M.: A non-volatile memory element based on an organic field-effect transistor. Appl. Phys. Lett. 85, 1823–1825 (2004)

    CrossRef  Google Scholar 

  75. Schroeder, R., Majewski, L.A., Grell, M.: Organic permanent memory transistor using an amorphous, spin-cast ferroelectric-like gate insulator. Adv. Mater. 16, 633–636 (2004)

    CrossRef  Google Scholar 

  76. Hartgerink, J.D., Granja, J.R., Milligan, R.A., Chadiri, M.R.: Self-assembling Peptide nanotubes. J. Amer. Chem. Soc. 118, 43–50 (1996)

    CrossRef  Google Scholar 

  77. Scanlon, S., Aggeli, A.: Self-assembling peptide nanotubes. Nanotoday 3, 22–30 (2008)

    Google Scholar 

  78. Adler-Abramovich, L., Aronov, D., Beker, P., Yevnin, M., Stempler, S., Buzhansky, L., Rosenman, G., Gazit, E.: Self-assembled arrays of peptide nanotubes by vapour deposition. Nature Nanotechnology 4, 849–854 (2009)

    CrossRef  Google Scholar 

  79. Shklovsky, J., Beker, P., Amdursky, N., Gazit, E., Rosenman, G.: Bioinspired peptide nanotubes: Deposition technology and physical properties. Materials Science and Engineering B 169, 62–66 (2010)

    CrossRef  Google Scholar 

  80. Gazit, E.: A possible role for p-stacking in the self-assembly of amyloid fibrils. FASEB J. 16, 77–83 (2002)

    CrossRef  Google Scholar 

  81. Görbitz, C.H.: Nanotube formation by hydrophobic dipeptides. Chem. Eur. J. 7, 5153–5159 (2001)

    CrossRef  Google Scholar 

  82. Görbitz, C.H.: Nanotubes from hydrophobic dipeptides: pore size regulation through side chain substitution. New J. Chem. 27, 1789–1793 (2003)

    CrossRef  Google Scholar 

  83. Görbitz, C.H.: The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer’s b-amyloid polypeptide. Chem. Commun., 2332–2334 (2006)

    Google Scholar 

  84. Sedman, V.L., Adler-Abramovich, L., Allen, S., Gazit, E., Tendler, S.J.B.: Direct observation of the release of phenylalanine from diphenilalanine nanotubes. J. Am. Chem. Soc. 128, 6903–6908 (2006)

    CrossRef  Google Scholar 

  85. Kol, N., Adler-Abramovich, L., Barlam, D., Shneck, R.Z., Gazit, E., Rousso, I.: Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. Nano Lett. 5, 1343–1346 (2005)

    CrossRef  Google Scholar 

  86. Harkany, T., Hortobágyi, T., Sasvári, M., Kónya, C., Penke, B., Luiten, P.G.M., Nyakas, C.: Neuroprotective approaches in experimental models of β-Amyloid neurotoxicity: Relevance to Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 23, 963 (1999)

    Google Scholar 

  87. HyperChem 7.5, Tools for Molecular Modeling; HyperChem 8.0, Professional Edition. Hypercube. Inc., Gainesville (2002 - 2010)

    Google Scholar 

  88. Landolt, H., Bornstein, R.: Numerical Data and Functional Relationships in Science and Technology (New Series), vol. III/16. Springer, Berlin (1981)

    Google Scholar 

  89. Adler-Abramovich, L., Reches, M., Sedman, V.L., Allen, S., Tendler, S.J.B., Gazit, E.: Thermal and Chemical Stability of Diphenylalanine Peptide Nanotubes: Implications for Nanotechnological Applications. Langmuir 22, 1313 (2006)

    CrossRef  Google Scholar 

  90. de Gennes, P.G., Prost, J.: The Physics of Liquid Crystals. Clarendon, Oxford (1993)

    Google Scholar 

  91. Bernstein, J.: Polymorphism in Molecular Crystals. Clarendon, Oxford (2002)

    Google Scholar 

  92. Scott, J.F., Fan, H.J., Kawasaki, S., Banys, J., Ivanov, M., Macutkevic, J., Blinc, R., Laguta, V.V., Cevc, P., Liu, J.S., Kholkin, A.L.: Terahertz Emission from Tubular Pb(Zr,Ti)O3 Nanostructures. Nano Lett. 8, 4404 (2006)

    CrossRef  Google Scholar 

  93. Nakanishi, T., Okamoto, H., Nagai, Y., Takeda, K.: Synthesis and atomic force microscopy observations of the single-peptide nanotubes and their micro-order assemblies. Phys. Rev. B 66, 165417 (2002)

    CrossRef  Google Scholar 

  94. Yan, X., Zhua, P., Li, J.: Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev. 39, 1877–1890 (2010)

    CrossRef  Google Scholar 

  95. Saez, I.M., Goodby, J.W.: Supermolecular liquid crystals. J. Mater. Chem. 15, 26–40 (2005)

    CrossRef  Google Scholar 

  96. Fandrich, M., Meinhardt, J., Grigorieff, N.: Structural polymorphism of Alzheimer Aβ and other amyloid fibrils. Prion 3(2), 89–93 (2009)

    CrossRef  Google Scholar 

  97. Raudenkol, S., Wartewig, S., Neubert, R.H.H.: Polymorphism of ceramide 6: a vibrational spectroscopic and X-ray powder diffraction investigation of the diastereomers of N-(α-hydroxyoctadecanoyl)-phytosphingosine. Chem. Phys. Lipids 133(1), 89–102 (2005)

    CrossRef  Google Scholar 

  98. Livolant, F., Leforestier, A., Durand, D., Doucet, J.: Structure of dna mesophases. Lect. Notes Phys. 415, 33 (1993)

    CrossRef  Google Scholar 

  99. Abeygunaratne, S., Jakli, A.J., Milkereit, G., Sawade, H., Vill, V.: Antiferroelectric ordering of amphiphilic glycolipids in bent-core liquid crystals. Phys. Rev. E 69, 21703 (2004)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir S. Bystrov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-VerlagBerlin Heidelberg

About this chapter

Cite this chapter

Bystrov, V.S. et al. (2012). Piezoelectricity and Ferroelectricity in Biomaterials: From Proteins to Self-assembled Peptide Nanotubes. In: Ciofani, G., Menciassi, A. (eds) Piezoelectric Nanomaterials for Biomedical Applications. Nanomedicine and Nanotoxicology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28044-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28044-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28043-6

  • Online ISBN: 978-3-642-28044-3

  • eBook Packages: EngineeringEngineering (R0)