Piezoelectricity and Ferroelectricity in Biomaterials: From Proteins to Self-assembled Peptide Nanotubes

Part of the Nanomedicine and Nanotoxicology book series (NANOMED)


Piezoelectricity is one of the common ferroelectric material properties, along with pyroelectricity, optical birefringence phenomena, etc. There has been widespread observation of piezoelectric and ferroelectric phenomena in many biological systems and molecules, and these are referred to as biopiezoelectricity and bioferroelectricity. Investigations have been made of these properties in biological and organic macromolecular systems on the nanoscale, by techniques such as atomic force microscopy (AFM) and piezoresponse force microscopy (PFM). This chapter presents a short overview of the main issues of piezoelectricity and ferroelectricity, and their manifestation in organic and biological objects, materials and molecular systems. As a showcase of novel biopiezomaterials, the investigation of diphenylalanine (FF) peptide nanotubes (PNTs) is described in more detail. FF PNTs present a unique class of self-assembled functional biomaterials, owing to a wide range of useful properties, including nanostructural variability, mechanical rigidity and chemical stability. The discovery of strong piezoactivity and polarization in aromatic dipeptides [ACS Nano 4, 610, 2010] opened up a new perspective for their use as nanoactuators, nanomotors and molecular machines as well for possible biomedical applications.


Second Harmonic Generation Piezoelectric Property Amyloid Fibril Cerebral Amyloid Angiopathy Ferroelectric Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lines, M.E., Glass, A.M.: Principles and Applications of Ferroelectrics and Related Materials. Clarendon Press, Oxford (1977)Google Scholar
  2. 2.
    Smolenskii, G.A., et al. (eds.): Physics of Ferroelectric Phenomena: Ferroelectrics and related materials (1985) (Nauka, Leningrad, in Russian; Gordon and Breach, New York, in English)Google Scholar
  3. 3.
    Goodby, J.W., Blinc, R., Clark, N.A., Lagerwall, S.T., Osipov, M.A., Pikin, S.A., Sakurai, T., Yoshino, K., Zeks, B.: Ferroelectric liquid crystals: Principles, properties and applications. Gordon and Breach, Philadelphia (1991)Google Scholar
  4. 4.
    Fukada, E.: Vibrational study of the wood used for the sound boards of pianos. Nature 166, 772–773 (1950)CrossRefGoogle Scholar
  5. 5.
    Fukada, E.: Piezoelectricity of wood. J. Phys. Soc. Jpn. 10, 149–154 (1955)CrossRefGoogle Scholar
  6. 6.
    Fukada, E., Yasuda, I.: On the piezoelectric effect of bone. J. Phys. Soc. Jpn. 12, 1158–1162 (1957)CrossRefGoogle Scholar
  7. 7.
    Fukada, E., Yasuda, I.: Piezoelectric effects in collagen. Jpn. J. Appl. Phys. 3, 117–121 (1964)CrossRefGoogle Scholar
  8. 8.
    Leuchtag, H.R.: Voltage-Sensitive Ion Channels: Biophysics of Molecular Excitability. Springer, Dordrecht (2008)CrossRefzbMATHGoogle Scholar
  9. 9.
    Leuchtag, H. R., Bystrov, V. S., Theoretical models of conformational transitions and ion conduction in voltage-dependent ion channels: Bioferroelectricity and superionic conduction. Ferroelectrics 220 (3-4), 157-204(1999)Google Scholar
  10. 10.
    Amdursky, N., Beker, P., Schklovsky, J., Gazit, E., Rosenman, G.: Ferroelectric and related phenomena in biological and bioinspired nanostructures. Ferroelectrics 399, 107–117 (2010)CrossRefGoogle Scholar
  11. 11.
    Athenstaedt, H.: Permanent Longitudinal Electric Polarisation and Pyroelectric Behaviour of Collagenous Structures and Nervous Tissue in Man and other Vertebrates. Nature 228, 830–834 (1970)CrossRefGoogle Scholar
  12. 12.
    Athenstaedt, H.: Pyroelectric and piezoelectric properties of vertebrates. Ann. NY Acad. Sci. 238, 68–94 (1974)CrossRefGoogle Scholar
  13. 13.
    Lang, S.B.: Pyroelectricity: Occurrence in biological materials and possible physiological implications. Ferroelectrics 34(1), 3–9 (1981)CrossRefGoogle Scholar
  14. 14.
    Athenstaedt, H.: Pyroelectric sensors of organisms. Ferroelectrics 11(1), 365–369 (1976)CrossRefGoogle Scholar
  15. 15.
    Fukada, E.: Piezoelectric properties of biological polymers. Quart. Rev. Biophys. 16(1), 59–87 (1983)CrossRefGoogle Scholar
  16. 16.
    Lang, S.B., Marino, A.A., Berkovic, G., Fowler, M., Abreo, K.D.: Piezoelectricity in the human pineal gland. Bioelectrochem. Bioenerg. 41, 191–195 (1996)CrossRefGoogle Scholar
  17. 17.
    Lang, S.B.: Pyroelectric effect in bone and tendon. Nature 212, 704–705 (1966)CrossRefGoogle Scholar
  18. 18.
    Lang, S.B.: Thermal expansion coefficients and primary and secondary pyroelectric coefficients of animal bone. Nature 224, 798–799 (1969)CrossRefGoogle Scholar
  19. 19.
    Lang, S.B.: Piezoelectricity, pyroelectricity and ferroelectricity in biomaterials - speculation on their biological significance. IEEE Trns. Dielectr. Electr. Insul. 7, 466–473 (2000)CrossRefGoogle Scholar
  20. 20.
    Kryszewski, M.: Fifty years of study of the piezoelectric properties of macromolecular structured biological materials. Acta Phys. Pol. A 105, 389–408 (2004)Google Scholar
  21. 21.
    Gruverman, A., Rodriguez, B.J., Kalinin, S.V.: Electromechanical Behavior in Biological Systems at the Nanoscale. Springer, New York (2007)Google Scholar
  22. 22.
    Athenstaedt, H.: Ferroelektrische und piezoelektrische Eigenschaften biologisch bedeutsamer Stoffe. Naturwissenschaften 48(13), 465–472 (1961)CrossRefGoogle Scholar
  23. 23.
    Fröhlich, H.: Long range coherence in biological systems. Riv. del Nuovo Cimento 7, 399 (1977)CrossRefGoogle Scholar
  24. 24.
    von Hippel, A.R.: Proceedings, Second International Meeting on Ferroelectricity. J. Phys. Soc. Japan 28(suppl.), 1 (1970)Google Scholar
  25. 25.
    Lemanov, V.V., Popov, S.N., Pankova, G.A.: Piezoelectric properties of crystals of some protein aminoacids and their related compounds. Phys. Sol. Stat. 44, 1929–1935 (2002)CrossRefGoogle Scholar
  26. 26.
    Lemanov, V.V., Popov, S.N., Pankova, G.A.: Protein amino acid crystals: Structure, symmetry, physical properties. Ferroelectrics 285, 581–590 (2003)Google Scholar
  27. 27.
    Hastings, G.W., Elmessiery, M.A., Rakowski, S.: Mechano-electrical properties of bone. Biomaterials 2, 225–233 (1981)CrossRefGoogle Scholar
  28. 28.
    Halperin, C., Mutchnik, S., Agronin, A., Molotskii, M., Urenski, P., Salai, M., Rosenman, G.: Piezoelectric Effect in Human Bones Studied in Nanometer Scale. Nano Lett. 4(7), 1253–1256 (2004)CrossRefGoogle Scholar
  29. 29.
    Minary-Jolandan, M., Yu, M.F.: Nanoscale characterization of isolated individual Type I collagen fibrils: Polarisation and piezoelectricity. Nanotechnology 20, 85706 (2009)CrossRefGoogle Scholar
  30. 30.
    Kholkin, A., Amdursky, N., Bdikin, I., Gazit, E., Rosenman, G.: Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano 4(2), 610–614 (2010)CrossRefGoogle Scholar
  31. 31.
    Newnham, R.E., Sundar, V., Yimnirun, R., Su, J., Zhang, Q.M.: Electrostriction: Nonlinear Electromechanical Coupling in Solid Dielectrics. J. Phys. Chem. B 101, 10141–10150 (1997)CrossRefGoogle Scholar
  32. 32.
    Kholkin, A.L., Brooks, K.G., Setter, N.: Electromechanical properties of SrBi2Ta2O9 thin films. Appl. Phys. Lett. 71(14) (1997)Google Scholar
  33. 33.
    Beresnev, L.A., Blinov, L.M., Kovshev, E.I.: Dokl. Biophys. 265, 111 (1982)Google Scholar
  34. 34.
    Beresnev, L.A., Pikin, S.A., Haase, W.: Ferroelectric Polymers. Condensed Matter News 1(8), 13 (1992)Google Scholar
  35. 35.
    Tasaki, I., Byrne, P.M.: The Origin of Rapid Changes in Birefringence, Light Scattering and Dye Absorbance Associated with Excitation of Nerve Fibers. Japanese J. Physiol. 75 (suppl.), S67–S75 (1993)Google Scholar
  36. 36.
    Tasaki, I.: Evidence for phase transition in nerve fibres, cells and synapses. Ferroelectrics 220, 305–316 (1999)CrossRefGoogle Scholar
  37. 37.
    Bystrov, V.S.: Ferroelectric Liquid Crystal Models of Ion Channels and Gating Phenomena in Biological Membranes. Ferroelectrics Letters 23, 87–93 (1997)CrossRefGoogle Scholar
  38. 38.
    Shirane, K., Tokimoto, T., Kushibe, H.: Physica D 90, 306 (1996)CrossRefzbMATHGoogle Scholar
  39. 39.
    Tokimoto, T., Shirane, K., Kushibe, H.: Self-organized chemical model and approaches to membrane excitation. Ferroelectrics 220, 273–290 (1999)CrossRefGoogle Scholar
  40. 40.
    Bystrov, V.S., Lakhno, V.D., Molchanov, A.M.: Ferroelectric-active models of ion channels in biomembranes. J. Theor. Biol. 168, 383–393 (1994)CrossRefGoogle Scholar
  41. 41.
    Gordon, A., Vugmeister, B.E., Rabitz, H., Dorfman, S., Felsteiner, J., Wyder, P.: A ferroelectric model, for the generation and propagation of an action potential and its magnetic field stimulation. Ferroelectrics 220, 291–304 (1999)CrossRefGoogle Scholar
  42. 42.
    Palti, Y., Adelman Jr., W.J.: Measurement of axonal membrane condactances and capacity by means of a varying potential control voltage clamp. J. Memb. Biol. 1, 431–458 (1969)CrossRefGoogle Scholar
  43. 43.
    Leuchtag, H.R.: Fit of the dielectric anomaly of squid axon membrane near heat-block temperature to the ferroelectric Curie-Weiss law. Biophys. Chem. 53, 197–205 (1995)CrossRefGoogle Scholar
  44. 44.
    Ermolina, I., Strinkovski, A., Lewis, A., Feldman, Y.: Observation of Liquid-Crystal-Like Ferroelectric Behavior in a Biological Membrane. J. Phys. Chem. B 105(14), 2673–2676 (2001)CrossRefGoogle Scholar
  45. 45.
    Brown, J.A., Tuszynski, J.A.: A Review of the Ferroelectric Model of Microtubules. Ferroelectrics 220, 141–156 (1999)CrossRefGoogle Scholar
  46. 46.
    Mickey, B., Howard, J.: Rigidity of microtubules is increased by stabilizing agents. J. Cell Biol. 130, 909–917 (1995)CrossRefGoogle Scholar
  47. 47.
    Sataric, M.V., Tuszynski, J.A.: Relationship between the nonlinear ferroelectric and liquid crystal models for microtubules. Phys. Rev. E 67, 11901 (2003)CrossRefGoogle Scholar
  48. 48.
    Tuszynski, J.A., Craddock, T.J.A., Carpenter, E.J.: Bio-Ferroelectricity at the Nanoscale. J. Comp. Theor. Nanoscience 5(10), 2022–2032 (2008)CrossRefGoogle Scholar
  49. 49.
    Tuszynski, J.A., Malinski, W., Carpenter, E.J., Luchko, T., Torin, H.J., Ludena, R.F.: Tubulin electrostatics and isotype specific drug binding. Canadian J. Phys. 86(4), 635–640 (2008)CrossRefGoogle Scholar
  50. 50.
    Hereida, A., Bdikin, I., Kopyl, S., Mishina, E., Semin, S.: Temperature-driven phase Transformation in self-assembled diphenylalanine peptide nanotubes. J. Phys. D: Appl. Phys.: Fast Track Communication 43, 462001 (6 pp) (2010)Google Scholar
  51. 51.
    Alexe, M., Gruverman, A. (eds.): Nanoscale Characterization of Ferroelectric Materials. Springer, Heidelberg (2004)Google Scholar
  52. 52.
    Kholkin, A.L., Kalinin, S.V., Roelofs, A., Gruverman, A.: Review of ferroelectric domain imaging by Piezoresponse Force Microscopy. In: Kalinin, S.V., Gruverman, A. (eds.) Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, vol. 1, pp. 173–214. Springer, New York (2007)Google Scholar
  53. 53.
    Schaap, I.A.T., de Pablo, P.J., Schmidt, C.F.: Resolving the molecular structure of microtubules under physiological conditions with scanning force microscopy. Eur. Biophys. J. 33, 462–467 (2004)CrossRefGoogle Scholar
  54. 54.
    Schaap, I.A.T., et al.: Elastic Response, Buckling, and Instability of Microtubules under Radial Indentation. Biophys. 91, 1521–1531 (2006)CrossRefGoogle Scholar
  55. 55.
    Ghiso, J., Plant, G.T., Levy, E., Wisniewski, T., Baumann, M.H.: C-terminal fragments of α- and β-tubulin form amyloid fibrils in vitro and associate with amyloid deposits of familial cerebral amyloid angiopathy. British type. Biochem. Biophys. Res. Commun. 219, 238–242 (1996)Google Scholar
  56. 56.
    Kalinin, S.V., Rodriguez, B.J., Shin, J., Jesse, S., Grichko, V., Thundat, T., Baddorf, A.P., Gruverman, A.: Bioelectromechanical imaging by scanning probe microscopy: Galvani’s experiment at the nanoscale. Ultramicroscopy 106, 334–340 (2006)CrossRefGoogle Scholar
  57. 57.
    Kalinin, S.V., Jesse, S., Rodriguez, B.J., Seal, K., Baddorf, A.P., Zhao, T., Chu, Y.H., Ramesh, R., Eliseev, E.A., Morozovska, A.N., Mirman, B., Karapetian, E.: Recent advances in electromechanical imaging on the nanometer scale: Polarisation dynamics in ferroelectrics, biopolymers, and liquid imaging. Jpn. J. Appl. Phys. 46, 5674–5685 (2007)CrossRefGoogle Scholar
  58. 58.
    Safari, A., Akdogan, K. (eds.): Piezoelectric and Acoustic Materials for Transducer Applications. Springer, New York (2008)Google Scholar
  59. 59.
    Alexe, M., Hesse, D.: Self-assembled nanoscale ferroelectrics. J. Mater. Sci. 41, 1–11 (2006)CrossRefGoogle Scholar
  60. 60.
    Muralt, P.: Ultrasonic Micromotors Based on PZT Thin Films. J. Electroceram. 3, 143–150 (1999)CrossRefGoogle Scholar
  61. 61.
    Polla, D.L., Erdman, A.G., Robbins, W.P., Markus, D.T., Diaz-Diaz, J., Rizq, R., Nam, Y., Brickner, H.T., Wang, A., Krulevitch, P.: Microdevices in medicine. Ann. Rev. Biomed. Eng. 2, 551–576 (2000)CrossRefGoogle Scholar
  62. 62.
    Hong, E., Krishnaswamy, S.V., Freidhoff, C.B.: Micromachined piezoelectric diaphragms actuated by ring shaped interdigitated transducer electrodes. Sens. Actuat. A 119, 520–526 (2005)CrossRefGoogle Scholar
  63. 63.
    Scott, J.: Ferroelectric Memories. Springer, Berlin (2000)Google Scholar
  64. 64.
    Ghadiri, M.R., Granja, J.R., Milligan, R.A., McRee, D.E., Hazanovich, N.: Self assembling organic nanotubes based on a cyclic peptide architecture. Nature 366, 324327 (1993)CrossRefGoogle Scholar
  65. 65.
    Aggeli, A., Bell, M., Boden, N., Keen, J.N., Knowles, P.F., McLeish, T.C.B., Pitkeathly, M., Radford, S.E.: Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes. Nature 386, 259–262 (1997)CrossRefGoogle Scholar
  66. 66.
    Hartgerink, J.D., Beniash, E., Stupp, S.L.: Self-assembly and mineralization of peptideamphiphile nanofibers. Science 294, 1684–1688 (2001)CrossRefGoogle Scholar
  67. 67.
    Reches, M., Gazit, E.: Casting metal nanowires within discrete self- assembled peptide nanotubes. Science 300, 625–627 (2003)CrossRefGoogle Scholar
  68. 68.
    Zhang, S.: Fabrication of novel biomaterials through molecular self assembly. Nature Biothechnol. 21, 1171–1178 (2003)CrossRefGoogle Scholar
  69. 69.
    Reches, M., Gazit, E.: Controlled patterning of aligned self-assembled peptide nanotubes. Nature Nanotech. 1, 195–200 (2006)CrossRefGoogle Scholar
  70. 70.
    Lovinger, A.J.: Ferroelectric Polymers. Science 220, 1115–1121 (1983)CrossRefGoogle Scholar
  71. 71.
    Naber, R.C.G., Tanase, C., Blom, P.W.M., Gelinck, G.H., Marsman, A.W., Touwslager, F.J., Setayesh, S., Leeuw, D.M.: High-performance solution-processed polymer ferroelectric field-effect transistors. Nature Mater. 4, 243–248 (2005)CrossRefGoogle Scholar
  72. 72.
    Gelinck, G.H., Marsman, A.W., Touwslager, F.J., Setayesh, S., Leeuw, D.M., Naber, R.C.G., Blom, P.W.M.: All-polymer ferroelectric transistors. Appl. Phys. Lett. 87, 092903-3 (2005)Google Scholar
  73. 73.
    Naber, R.C.G., Boer, B., Blom, P.W.M., Leew, D.M.: Low-voltage polymer field-effect transistors for nonvolatile memories. Appl. Phys. Lett. 87, 203509-3 (2005)Google Scholar
  74. 74.
    Narayanan, K.N., Bettignies, R., Dabos-Seignon, S., Nunzi, J.M.: A non-volatile memory element based on an organic field-effect transistor. Appl. Phys. Lett. 85, 1823–1825 (2004)CrossRefGoogle Scholar
  75. 75.
    Schroeder, R., Majewski, L.A., Grell, M.: Organic permanent memory transistor using an amorphous, spin-cast ferroelectric-like gate insulator. Adv. Mater. 16, 633–636 (2004)CrossRefGoogle Scholar
  76. 76.
    Hartgerink, J.D., Granja, J.R., Milligan, R.A., Chadiri, M.R.: Self-assembling Peptide nanotubes. J. Amer. Chem. Soc. 118, 43–50 (1996)CrossRefGoogle Scholar
  77. 77.
    Scanlon, S., Aggeli, A.: Self-assembling peptide nanotubes. Nanotoday 3, 22–30 (2008)Google Scholar
  78. 78.
    Adler-Abramovich, L., Aronov, D., Beker, P., Yevnin, M., Stempler, S., Buzhansky, L., Rosenman, G., Gazit, E.: Self-assembled arrays of peptide nanotubes by vapour deposition. Nature Nanotechnology 4, 849–854 (2009)CrossRefGoogle Scholar
  79. 79.
    Shklovsky, J., Beker, P., Amdursky, N., Gazit, E., Rosenman, G.: Bioinspired peptide nanotubes: Deposition technology and physical properties. Materials Science and Engineering B 169, 62–66 (2010)CrossRefGoogle Scholar
  80. 80.
    Gazit, E.: A possible role for p-stacking in the self-assembly of amyloid fibrils. FASEB J. 16, 77–83 (2002)CrossRefGoogle Scholar
  81. 81.
    Görbitz, C.H.: Nanotube formation by hydrophobic dipeptides. Chem. Eur. J. 7, 5153–5159 (2001)CrossRefGoogle Scholar
  82. 82.
    Görbitz, C.H.: Nanotubes from hydrophobic dipeptides: pore size regulation through side chain substitution. New J. Chem. 27, 1789–1793 (2003)CrossRefGoogle Scholar
  83. 83.
    Görbitz, C.H.: The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer’s b-amyloid polypeptide. Chem. Commun., 2332–2334 (2006)Google Scholar
  84. 84.
    Sedman, V.L., Adler-Abramovich, L., Allen, S., Gazit, E., Tendler, S.J.B.: Direct observation of the release of phenylalanine from diphenilalanine nanotubes. J. Am. Chem. Soc. 128, 6903–6908 (2006)CrossRefGoogle Scholar
  85. 85.
    Kol, N., Adler-Abramovich, L., Barlam, D., Shneck, R.Z., Gazit, E., Rousso, I.: Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. Nano Lett. 5, 1343–1346 (2005)CrossRefGoogle Scholar
  86. 86.
    Harkany, T., Hortobágyi, T., Sasvári, M., Kónya, C., Penke, B., Luiten, P.G.M., Nyakas, C.: Neuroprotective approaches in experimental models of β-Amyloid neurotoxicity: Relevance to Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 23, 963 (1999)Google Scholar
  87. 87.
    HyperChem 7.5, Tools for Molecular Modeling; HyperChem 8.0, Professional Edition. Hypercube. Inc., Gainesville (2002 - 2010)Google Scholar
  88. 88.
    Landolt, H., Bornstein, R.: Numerical Data and Functional Relationships in Science and Technology (New Series), vol. III/16. Springer, Berlin (1981)Google Scholar
  89. 89.
    Adler-Abramovich, L., Reches, M., Sedman, V.L., Allen, S., Tendler, S.J.B., Gazit, E.: Thermal and Chemical Stability of Diphenylalanine Peptide Nanotubes: Implications for Nanotechnological Applications. Langmuir 22, 1313 (2006)CrossRefGoogle Scholar
  90. 90.
    de Gennes, P.G., Prost, J.: The Physics of Liquid Crystals. Clarendon, Oxford (1993)Google Scholar
  91. 91.
    Bernstein, J.: Polymorphism in Molecular Crystals. Clarendon, Oxford (2002)Google Scholar
  92. 92.
    Scott, J.F., Fan, H.J., Kawasaki, S., Banys, J., Ivanov, M., Macutkevic, J., Blinc, R., Laguta, V.V., Cevc, P., Liu, J.S., Kholkin, A.L.: Terahertz Emission from Tubular Pb(Zr,Ti)O3 Nanostructures. Nano Lett. 8, 4404 (2006)CrossRefGoogle Scholar
  93. 93.
    Nakanishi, T., Okamoto, H., Nagai, Y., Takeda, K.: Synthesis and atomic force microscopy observations of the single-peptide nanotubes and their micro-order assemblies. Phys. Rev. B 66, 165417 (2002)CrossRefGoogle Scholar
  94. 94.
    Yan, X., Zhua, P., Li, J.: Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev. 39, 1877–1890 (2010)CrossRefGoogle Scholar
  95. 95.
    Saez, I.M., Goodby, J.W.: Supermolecular liquid crystals. J. Mater. Chem. 15, 26–40 (2005)CrossRefGoogle Scholar
  96. 96.
    Fandrich, M., Meinhardt, J., Grigorieff, N.: Structural polymorphism of Alzheimer Aβ and other amyloid fibrils. Prion 3(2), 89–93 (2009)CrossRefGoogle Scholar
  97. 97.
    Raudenkol, S., Wartewig, S., Neubert, R.H.H.: Polymorphism of ceramide 6: a vibrational spectroscopic and X-ray powder diffraction investigation of the diastereomers of N-(α-hydroxyoctadecanoyl)-phytosphingosine. Chem. Phys. Lipids 133(1), 89–102 (2005)CrossRefGoogle Scholar
  98. 98.
    Livolant, F., Leforestier, A., Durand, D., Doucet, J.: Structure of dna mesophases. Lect. Notes Phys. 415, 33 (1993)CrossRefGoogle Scholar
  99. 99.
    Abeygunaratne, S., Jakli, A.J., Milkereit, G., Sawade, H., Vill, V.: Antiferroelectric ordering of amphiphilic glycolipids in bent-core liquid crystals. Phys. Rev. E 69, 21703 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-VerlagBerlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Ceramics and Glass Engineering & CICECOUniversity of AveiroAveiroPortugal
  2. 2.Institute of Mathematical Problems of BiologyRASPushchinoRussia
  3. 3.Department of Mechanical Engineering, Centre for Mechanical Technology & AutomationUniversity of AveiroAveiroPortugal
  4. 4.Electronics and AutomationMoscow State Institute of RadioengineeringMoscowRussia

Personalised recommendations