Modeling of Piezoelectric Nanodevices

  • Christian Falconi
  • Giulia Mantini
  • Arnaldo D’Amico
  • Vittorio Ferrari
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)

Abstract

Since fabrication, characterization, and integration into practical devices of nanostructures is unavoidably complex and expensive, accurate models are crucial for designing high performance nanostructures-based devices. Moreover, piezoelectric nanotransducers may have several crucial advantages when compared with the correspondent macro- or micro-devices. For these reasons, after reviewing both piezoelectric constitutive equations and equivalent circuits for piezoelectric transducers, we show how these tools can be applied to analysis and design of practical piezoelectric nanodevices. As an important example, we choose piezoelectric nanogenerators; however, by analyzing this type of devices, we discuss the key general concepts and challenges for modeling piezoelectric nanodevices.

Keywords

Schottky Barrier Donor Concentration Piezoelectric Element Electromechanical Coupling Factor Contact Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Senturia, S.D.: Microsystem Design. Springer, Heidelberg (2000)Google Scholar
  2. 2.
    Falconi, C., Martinelli, E., Di Natale, C., D’Amico, A., Maloberti, F., Malcovati, P., Baschirotto, A., Stornelli, V., Ferri, G.: Electronic interfaces. Sensors and Actuators B 121, 295–329 (2007)Google Scholar
  3. 3.
    Falconi, C., Mantini, G., D’Amico, A., Wang, Z.L.: Studying piezoelectric nanowires and nanowalls for energy harvesting. Sensors and Actuators B 139, 511–519 (2009)Google Scholar
  4. 4.
    Falconi, C., D’Amico, A., Wang, Z.L.: Wireless Joule Nanoheaters. Sensors and Actuators B 127, 54–62 (2007)Google Scholar
  5. 5.
    Hu, Y., Goa, Y., Singameni, S., Tsukruk, V.V., Wang, Z.L.: Converse Piezoelectric Effect Induced Transverse Deflection of a Free-Standing ZnO Microbelt. NanoLetters 9(7), 2661–2665 (2009)CrossRefGoogle Scholar
  6. 6.
    Royer, D., Dieulesaint, E.: Elastic Waves in Solids I, vol. 1. Springer, Heidelberg (2000)MATHGoogle Scholar
  7. 7.
    Auld, B.A.: Acoustic Fields and Waves in Solids, vol. 1-2. John Wiley & Sons, New York (1973)Google Scholar
  8. 8.
    Newnham, R.E.: Properties of Materials. Oxford University Press, New York (2005)Google Scholar
  9. 9.
    Damjanovic, D.: Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267–1324 (1998)CrossRefGoogle Scholar
  10. 10.
    Haertling, G.H.: Ferroelectric Ceramics: History and Technology. J. Am. Ceram. Soc. 82, 797–818 (1999)CrossRefGoogle Scholar
  11. 11.
    Waanders, J.W.: Piezoelectric ceramics, Ehindhoven, Philips Components (1991)Google Scholar
  12. 12.
    Tilmans, H.A.C.: Equivalent circuit representation of electromechanical transducers: I Lumped-parameter systems. J. Micromech. Microeng. 6, 157–176 (1996)CrossRefGoogle Scholar
  13. 13.
    Mason, W.P.: Electromechanical Transducers and Wave Filters. Van Nostrand Company, New York (1948)Google Scholar
  14. 14.
    Roundy, S., Wright, P.K., Rabaey, J.: A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26, 1131–1144 (2003)CrossRefGoogle Scholar
  15. 15.
    Ferrari, M., Ferrari, V., Guizzetti, M., Marioli, D., Taroni, A.: Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems. Sensors and Actuators A 142, 329–335 (2008)CrossRefGoogle Scholar
  16. 16.
    Williams, C.B., Yates, R.B.: Analysis of a micro-electric generator for microsystems. Sensors and Actuators A 52, 8–11 (1996)CrossRefGoogle Scholar
  17. 17.
    D’hulst, R., Driesen, J.: Power processing circuits for vibration-based energy harvesters. In: Proc. of IEEE Power Electronics Specialists Conference, pp. 2556–2562 (2008)Google Scholar
  18. 18.
    Wang, Z.L., Song, J.: - Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)CrossRefGoogle Scholar
  19. 19.
    Wang, Z.L.: ZnO nanowire and nanobelt platform for nanotechnology. Mat. Sc. Eng. R 64, 33–71 (2009)CrossRefGoogle Scholar
  20. 20.
    Lu, M.P., Song, J., Lu, M.Y., Chen, M.T., Gao, Y., Chen, L.J., Wang, Z.L.: Piezoelectric nanogenerator using p-type ZnO nanowire array. Nanoletters 9(3), 1223–1227 (2009)CrossRefGoogle Scholar
  21. 21.
    Gao, Y., Wang, Z.L.: Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerators and nanopiezotronics. NanoLetters 7(8) (2007)Google Scholar
  22. 22.
    Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., Wang, Z.L.: Self-powered nanowire device. Nat. Nanotech. 5, 366–373 (2010)CrossRefGoogle Scholar
  23. 23.
    Yang, R., Qin, Y., Dai, L., Wang, Z.L.: Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotech. 4, 34–39 (2008)CrossRefGoogle Scholar
  24. 24.
    Sun, C., Shi, J., Wang, X.: Fundamental study of mechanical energy harvesting using piezoelectric nanostructures. J. Appl. Phys. 108, 34309 (2010)CrossRefGoogle Scholar
  25. 25.
    Gao, Y., Wang, Z.L.: Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nanoletters 9(3) (2009)Google Scholar
  26. 26.
    Mantini, G., Gao, Y., D’Amico, A., Falconi, C., Wang, Z.L.: Equilibrium piezoelectric potential distribution in a deformed ZnO nanowire. Nano Res. 2, 624–629 (2009)CrossRefGoogle Scholar
  27. 27.
    Romano, G., Mantini, G., Di Carlo, A., D’Amico, A., Falconi, C., Wang, Z.L.: Piezoelectric potential in vertically aligned nanowire for high output nanogenerators. Submitted to Nanotechnology (2011)Google Scholar
  28. 28.
    Romano, G., Mantini, G., Di Carlo, A., D’Amico, A., Falconi, C., Wang, Z.L.: Influence of carriers concentration of piezoelectric potential in vertically compressed ZnO nanowires. In: AISEM (2011)Google Scholar
  29. 29.
    Chen, J., Lee, J.D.: Atomic formulation of nano-piezo-electricity in barium titanate. Nanoscience and Nanotechnology Letters 2, 26–29 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-VerlagBerlin Heidelberg 2012

Authors and Affiliations

  • Christian Falconi
    • 1
    • 2
  • Giulia Mantini
    • 1
  • Arnaldo D’Amico
    • 1
  • Vittorio Ferrari
    • 3
  1. 1.Department of Electronic EngineeringUniversity of Tor VergataRomeItaly
  2. 2.IDASC Istituto di Acustica e Sensoristica “Orso Mario Corbino”RomeItaly
  3. 3.Department of Information Engineering (DII)University of BresciaBresciaItaly

Personalised recommendations