Mechanical and Electromechanical Characterization of One-Dimensional Piezoelectric Nanomaterials

  • Majid Minary-Jolandan
  • Min-Feng Yu
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)


In this chapter nanoscale characterization techniques for piezoelectric materials are discussed, with a focus on nanomechanical and electromechanical methods for one-dimensional nanomaterials. One-dimensional nanostructures have been the focus of recent nanoscale research due to their potential application in future nanoelectronics and nanodevices. However, their small size and special geometry impose a challenge especially from experimental point of view and renders their characterization nontrivial. In this chapter, the common methods of nanomechanical and electromechanical characterization of these nanostructures are discussed, with an emphasis on piezoelectric one-dimensional materials. Advantages and limitations of each method are discussed and the relevant literature is presented.


Collagen Fibril Scanning Electron Micro Physical Review Letter Apply Physic Letter Atomic Force Micro 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kuchibhatla, S.V.N.T., et al.: One dimensional nanostructured materials. Progress in Materials Science 52 (2007)Google Scholar
  2. 2.
    Lu, J.G., Chang, P., Fan, Z.: Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications. Materials Science and Engineering R 52, 49–91 (2006)CrossRefGoogle Scholar
  3. 3.
    Zhu, Y., Ke, C., Espinosa, H.D.: Experimental Techniques for the Mechanical Characterization of One-Dimensional Nanostructures. Experimental Mechanics 47, 7–24 (2007)CrossRefGoogle Scholar
  4. 4.
    Yu, M., et al.: Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope. Nanotechnology 10, 244–252 (1999)CrossRefGoogle Scholar
  5. 5.
    Yu, M.-F., et al.: Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load. Science 287, 637–640 (2000)CrossRefGoogle Scholar
  6. 6.
    Yu, M.-F., et al.: Tensile Loading of Ropes of SingleWall Carbon Nanotubes and their Mechanical Properties. Physical Review Letters 84, 5552–5555 (2000)CrossRefGoogle Scholar
  7. 7.
    Zhu, Y., Espinosa, H.D.: An electromechanical material testing system for in situ electron microscopy and applications. Proceedings of the National Academy of Sciences of USA 102, 14503–14508 (2005)CrossRefGoogle Scholar
  8. 8.
    Peng, B., et al.: Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nature Nanotechnology 3, 626–631 (2008)CrossRefGoogle Scholar
  9. 9.
    Shen, Z.L., et al.: Stress-Strain Experiments on Individual Collagen Fibrils. Biophysical Journal 95, 3956–3963 (2008)CrossRefGoogle Scholar
  10. 10.
    Agrawal, R., et al.: Elasticity Size Effects in ZnO Nanowires-A Combined Experimental-Computational Approach. Nano Letters 8, 3668–3674 (2008)CrossRefGoogle Scholar
  11. 11.
    Agrawal, R., Peng, B., Espinosa, H.D.: Experimental-Computational Investigation of ZnO nanowires Strength and Fracture. Nano Letters 9, 4177–4183 (2009)CrossRefGoogle Scholar
  12. 12.
    Desai, A.V., Haque, M.A.: Mechanical properties of ZnO nanowires. Sensors and Actuators A 134, 169–176 (2007)CrossRefGoogle Scholar
  13. 13.
    Xu, F., et al.: Mechanical Properties of ZnO Nanowires Under Different Loading Modes. Nano Research 3, 271–280 (2010)CrossRefGoogle Scholar
  14. 14.
    Hoffmann, S., et al.: Fracture strength and Young’s modulus of ZnO nanowires. Nanotechnology 18, 205503 (2007)CrossRefGoogle Scholar
  15. 15.
    Xu, S., Shi, Y., Kim, S.-G.: Fabrication and mechanical property of nano piezoelectric fibres. Nanotechnology 17, 4497–4501 (2006)CrossRefGoogle Scholar
  16. 16.
    Heidelberg, A., et al.: A Generalized Description of the Elastic Properties of Nanowires. Nano Letters 6, 1101–1106 (2006)CrossRefGoogle Scholar
  17. 17.
    Walters, D.A., et al.: Elastic strain of freely suspended single-wall carbon nanotube ropes. Applied Physics Letters 74, 3803–3805 (1999)CrossRefGoogle Scholar
  18. 18.
    Salvetat, J.-P., et al.: Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes. Physical Review Letters 82, 944–947 (1999)CrossRefGoogle Scholar
  19. 19.
    Kis, A., et al.: Nanomechanics of Microtubules. Physical Review Letters 89, 248101-248104 (2002)Google Scholar
  20. 20.
    Gere, J.M., Timoshenko, S.P.: Mechanics of Materials. In: Cengage Learning, 7th edn., Toronto, Canada (2009)Google Scholar
  21. 21.
    Yang, L., et al.: Mechanical Properties of Native and Cross-linked Type I Collagen Fibrils. Biophysical Journal 94, 2204–2211 (2008)CrossRefGoogle Scholar
  22. 22.
    Wen, B., Sader, J.E., Boland, J.J.: Mechanical Properties of ZnO Nanowires. Physical Review Letters 101, 175502–175504 (2008)CrossRefGoogle Scholar
  23. 23.
    Ni, H., et al.: Elastic modulus of single-crystal GaN nanowires. Journal of Materials Research 21, 2882–2887 (2006)CrossRefGoogle Scholar
  24. 24.
    Ni, H., Li, X.: Young’s modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques. Nanotechnology 17, 3591–3597 (2006)CrossRefGoogle Scholar
  25. 25.
    Heim, A.J., Koob, T.J., Matthews, W.G.: Low Strain Nanomechanics of Collagen Fibrils. Biomacromolecules 8, 3298–3301 (2007)CrossRefGoogle Scholar
  26. 26.
    Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science 277, 1971–(1975)CrossRefGoogle Scholar
  27. 27.
    Song, J., et al.: Elastic Property of Vertically Aligned Nanowires. Nano Letters 5, 1954–1958 (2005)CrossRefGoogle Scholar
  28. 28.
    Chen, C.Q., Zhua, J.: Bending strength and flexibility of ZnO nanowires. Applied Physics Letters 90, 043105 (2007)Google Scholar
  29. 29.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)zbMATHGoogle Scholar
  30. 30.
    Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research 7, 1564–1583 (1992)CrossRefGoogle Scholar
  31. 31.
    Sneddon, I.N.: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Scinece 3, 47–57 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Tan, E.P.S., Lim, C.T.: Nanoindentation study of nanofibers. Applied Physics Letters 87, 123106 (2005)CrossRefGoogle Scholar
  33. 33.
    Minary-Jolandan, M., Yu, M.-F.: Reversible radial deformation up to the complete flattening of carbon nanotubes in nanoindentation. Journal of Applied Physics 103, 073516-5 (2008)Google Scholar
  34. 34.
    Oliver, W.C., Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research 19, 3–20 (2004)CrossRefGoogle Scholar
  35. 35.
    Yu, M.-F., Kowalewski, T., Ruoff, R.S.: Investigation of the Radial Deformability of Individual Carbon Nanotubes under Controlled Indentation Force. Physical Review Letters 85, 1456–1459 (2000)CrossRefGoogle Scholar
  36. 36.
    Li, X., et al.: Nanoindentation of Silver Nanowires. Nano Letters 3, 1495–1498 (2003)CrossRefGoogle Scholar
  37. 37.
    Minary-Jolandan, M., Yu, M.-F.: Nanomechanical Heterogeneity in the Gap and Overlap Regions of Type I Collagen Fibrils with Implications for Bone Heterogeneity. Biomacromolecules 10, 2565–2570 (2009)CrossRefGoogle Scholar
  38. 38.
    Stan, G., et al.: Diameter-Dependent Radial and Tangential Elastic Moduli of ZnO Nanowires. Nano Letters 7, 3691–3697 (2007)CrossRefGoogle Scholar
  39. 39.
    Boresi, A.P.: Advanced mechanics of materials. John Wiley & Sons, New York (1993)Google Scholar
  40. 40.
    Feng, G., et al.: A study of the mechanical properties of nanowires using nanoindentation. Journal of Applied Physics 99, 74304 (2006)CrossRefGoogle Scholar
  41. 41.
    Lucas, M., et al.: Aspect Ratio Dependence of the Elastic Properties of ZnO Nanobelts. Nano Letters 7, 1314–1317 (2007)CrossRefMathSciNetGoogle Scholar
  42. 42.
    Chopra, N.G., Zettl, A.: Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Communications 105, 297–300 (1998)CrossRefGoogle Scholar
  43. 43.
    Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M.: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996)CrossRefGoogle Scholar
  44. 44.
    Krishnan, A., et al.: Young’s modulus of single-walled nanotubes. Physical Review B 58, 14013–14019 (1998)CrossRefGoogle Scholar
  45. 45.
    Yu, M.-F., et al.: Realization of parametric resonances in a nanowire mechanical system with nanomanipulation inside a scanning electron microscope. Physical Review B 66, 73406 (2002)CrossRefGoogle Scholar
  46. 46.
    Poncharal, P., et al.: Electrostatic Deßections and Electromechanical Resonances of Carbon Nanotubes. Science 238, 1513–1516 (1999)CrossRefGoogle Scholar
  47. 47.
    Suryavanshi, A.P., et al.: Elastic modulus and resonance behavior of boron nitride nanotubes. Applied Physics Letters 84, 2527–2529 (2004)CrossRefGoogle Scholar
  48. 48.
    Chen, C.Q., et al.: Size Dependence of Young’s Modulus in ZnO Nanowires. Physical Review Letters 96, 075505-4 (2006)Google Scholar
  49. 49.
    Bai, X.D., et al.: Dual-mode mechanical resonance of individual ZnO nanobelts. Applied Physics Letters 82, 4806–4808 (2003)CrossRefGoogle Scholar
  50. 50.
    Huang, Y., Bai, X., Zhang, Y.: In situ mechanical properties of individual ZnO nanowires and the mass measurement of nanoparticles. Journal of Physics: Condensed Matter 184, L179–L184 (2006)Google Scholar
  51. 51.
    Newnham, R.E.: Properties of Materials, 1st edn. Oxford University Press, New York (2005)Google Scholar
  52. 52.
    Wang, Z., et al.: Voltage Generation from Individual BaTiO3 Nanowires under Periodic Tensile Mechanical Load. Nano Letters 7, 2966–2969 (2007)CrossRefGoogle Scholar
  53. 53.
    Wang, Z.L., Song, J.: Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 312, 242–246 (2006)CrossRefGoogle Scholar
  54. 54.
    Gao, Y., Wang, Z.L.: Electrostatic Potential in a Bent Piezoelectric Nanowire. The Fundamental Theory of Nanogenerator and Nanopiezotronics. Nano Letters 7, 2499–2505 (2007)Google Scholar
  55. 55.
    Lin, Y.-F., et al.: Piezoelectric nanogenerator using CdS nanowires. Applied Physics Letters 92 (2008)Google Scholar
  56. 56.
    Su, W.S., et al.: Generation of electricity in GaN nanorods induced by piezoelectric effect. Applied Physics Letters 90, 063110-3 (2007)Google Scholar
  57. 57.
    Chen, X., et al.: Potential measurement from a single lead zirconate titanate nanofiber using a nanomanipulator. Applied Physics Letters 94, 253113-3 (2009)Google Scholar
  58. 58.
    Güthner, P., Dransfeld, K.: Local poling of ferroelectric polymers by scanning force microscopy. Applied Physics Letters 61, 1137 (1992)CrossRefGoogle Scholar
  59. 59.
    Kolosov, O., et al.: Nanoscale visualization and control of ferroelectric domains by atomic force microscopy. Physical Review Letters 74, 4309–4312 (1995)CrossRefGoogle Scholar
  60. 60.
    Gruverman, A., Auciello, O., Tokumoto, H.: Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy. Annual Review of Materials Science 28, 101–123 (1998)CrossRefGoogle Scholar
  61. 61.
    Alex, M., Gruverman, A.: Nanoscale characterisation of ferroelectric materials: scanning probe microscopy approach. Springer, Heidelberg (2004)Google Scholar
  62. 62.
    Hidaka, T., et al.: Formation and observation of 50 nm polarized domains in PbZr(1-x)Ti(x)o(3) thin films using scanning probe microscope. Applied Physics Letters 68, 2358–2359 (1996)CrossRefGoogle Scholar
  63. 63.
    Birk, H., et al.: The local piezoelectric activity of thin polymer films observed by scanning tunneling microscopy. Journal of Vaccum Science and Technology B 9, 1162–1165 (1991)CrossRefGoogle Scholar
  64. 64.
    Wang, Z., Hu, J., Yua, M.-F.: One-dimensional ferroelectric monodomain formation in single crystalline BaTiO3 nanowire. Applied Physics Letters 89, 263119 (2006)CrossRefGoogle Scholar
  65. 65.
    Wang, Z., Suryavanshi, A.P., Yu, M.-F.: Ferroelectric and piezoelectric behaviors of individual single crystalline BaTiO3 nanowire under direct axial electric biasing. Applied Physics Letters 89, 82903–82903 (2006)CrossRefGoogle Scholar
  66. 66.
    Kalinin, S.V., Rar, A., Jesse, S.: A Decade of piezoresponse force microscopy: progress, challenges, and opportunities. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 2226–2252 (2006)CrossRefGoogle Scholar
  67. 67.
    Wang, J., et al.: Ferroelectric domains and piezoelectricity in monocrystalline Pb(Zr,Ti)O3 nanowires. Applied Physics Letters 90, 133107 (2007)CrossRefGoogle Scholar
  68. 68.
    Yun, W.S., et al.: Ferroelectric Properties of Individual Barium Titanate Nanowires Investigated by Scanned Probe Microscopy. Nano Letters 2, 447–450 (2002)CrossRefMathSciNetGoogle Scholar
  69. 69.
    Luo, Y., et al.: Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate. Applied Physics Letters 83, 440–442 (2003)CrossRefGoogle Scholar
  70. 70.
    Zhao, M.-H., Wang, Z.-L., Mao, S.X.: Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope. Nano Letters 4, 587–590 (2004)CrossRefGoogle Scholar
  71. 71.
    Zhang, X.Y., et al.: Synthesis and piezoresponse of highly ordered Pb(Zr0.53Ti0.47) O3 nanowire arrays. Applied Physics Letters 85, 4190–41992 (2004)CrossRefGoogle Scholar
  72. 72.
    Wang, J., et al.: Piezoresponse force microscopy on doubly clamped KNbO3 nanowires. Applied Physics Letters 93, 223101 (2008)CrossRefGoogle Scholar
  73. 73.
    Ke, T.-Y., et al.: Sodium Niobate Nanowire and Its Piezoelectricity. Journal of Physical Chemistry C 112, 8827–8831 (2008)CrossRefGoogle Scholar
  74. 74.
    Suyal, G., et al.: Piezoelectric Response and Polarization Switching in Small Anisotropic Perovskite Particles. Nano Letters 4, 1339–1342 (2004)CrossRefGoogle Scholar
  75. 75.
    Amdursky, N., et al.: Ferroelectric and related phenomena in biological and bioinspired nanostructures. Ferroelectrics 399, 107–117Google Scholar
  76. 76.
    Minary-Jolandan, M., Yu, M.-F.: Uncovering Nanoscale Electromechanical Heterogeneity in the Subfibrillar Structure of Collagen Fibrils Responsible for the Piezoelectricity of Bone. ACS Nano 3, 1859–1863 (2009)CrossRefGoogle Scholar
  77. 77.
    Minary-Jolandan, M., Yu, M.-F.: Nanoscale characterization of isolated individual type I collagen fibrils: polarization and piezoelectricity. Nanotechnology 20, 085706 (2009)Google Scholar
  78. 78.
    Kholkin, A., et al.: Strong Piezoelectricity in Bioinspired Peptide Nanotubes. ACS Nano 4, 610–614 (2010)CrossRefGoogle Scholar
  79. 79.
    Nikiforov, M.P., et al.: Double-Layer Mediated Electromechanical Response of Amyloid Fibrils in Liquid Environment. ACS Nano 4, 689–698 (2010)CrossRefMathSciNetGoogle Scholar
  80. 80.
    Chen, X., et al.: 1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers. Nano Letters 10, 2133–2137 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-VerlagBerlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations