Advertisement

Quantitative Causality in Membrane Systems

  • Oana Agrigoroaiei
  • Gabriel Ciobanu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7184)

Abstract

We define and study specific and general causality in terms of multisets of objects and of multisets of rules. We relate the two notions of causality, and provide characterizations for each of them. We give an inductive method of obtaining the general causes of a multiset of objects, and use the general causes of a multiset v to find all the multisets u from which v can be obtained in a single evolution step.

Keywords

Membrane System General Causality Minimal Element Minimal Cover Evolution Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrigoroaiei, O., Ciobanu, G.: Rule-Based and Object-Based Event Structures for Membrane Systems. Journal of Logic and Algebraic Programming 79, 295–303 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Agrigoroaiei, O., Ciobanu, G.: Reversing Computation in Membrane Systems. Journal of Logic and Algebraic Programming 79, 278–288 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Agrigoroaiei, O., Ciobanu, G.: Flattening the Transition P Systems with Dissolution. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol. 6501, pp. 53–64. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Busi, N.: Causality in Membrane Systems. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 160–171. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Ciobanu, G., Lucanu, D.: Events, Causality, and Concurrency in Membrane Systems. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 209–227. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Freund, R., Verlan, S.: A Formal Framework for Static (Tissue) P Systems. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 271–284. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Kleijn, J., Koutny, M., Rozenberg, G.: Towards a Petri Net Semantics for Membrane Systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 292–309. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Păun, G., Rozenberg, G., Salomaa, A. (eds.): Handbook of Membrane Computing. Oxford University Press (2010)Google Scholar
  10. 10.
    Pinna, G.M., Saba, A.: An Event Based Semantics of P Systems. Scientific Annals of Computer Science 18, 99–128 (2008)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Winskel, G.: An Introduction to Event Structures. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency. LNCS, vol. 354, pp. 364–397. Springer, Heidelberg (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Oana Agrigoroaiei
    • 1
  • Gabriel Ciobanu
    • 1
  1. 1.Institute of Computer ScienceRomanian AcademyIaşiRomania

Personalised recommendations