Sequentiality Induced by Spike Number in SNP Systems: Small Universal Machines

  • Andrei Păun
  • Manuela Sidoroff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7184)


In this paper we consider sequential SNP systems where the sequentiality of the system is induced by the max-spike: the neuron with the maximum number of spikes out of the neurons that can spike at one step will fire. This corresponds to a global view of the whole network that makes the system sequential. We continue the study in the direction of max-spike and show that systems with 132 neurons are universal. This improves a recent result in the area.


Clock Cycle Spike Train Output Register Register Machine Spike Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gerstner, W., Kistler, W.: Spiking Neuron Models. Single Neurons, Populations, Plasticity. Cambridge Univ. Press (2002)Google Scholar
  2. 2.
    Gottumukkala, N.R., et al.: Reliability of a System of k Nodes for High Performance Computing Applications. IEEE Transactions on Reliability 59(1), 162–169 (2010), doi:10.1109/TR.2009.2034291CrossRefGoogle Scholar
  3. 3.
    Ibarra, O.H., Păun, A., Rodriguez-Paton, A.: Sequential SNP systems based on min/max spike number. Theoretical Computer Science 410(30-32), 2982–2991 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ibarra, O.H., Păun, A., Rodríguez-Patón, A.: Sequentiality Induced by Spike Number in SNP Systems. In: Goel, A., Simmel, F.C., Sosík, P. (eds.) DNA 14. LNCS, vol. 5347, pp. 179–190. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Ibarra, O.H., Woodworth, S., Yu, F., Păun, A.: On Spiking Neural P Systems and Partially Blind Counter Machines. In: Calude, C.S., Dinneen, M.J., Păun, G., Rozenberg, G., Stepney, S. (eds.) UC 2006. LNCS, vol. 4135, pp. 113–129. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta Informaticae 71(2-3), 279–308 (2006)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Korec, I.: Small universal register machines. Theoretical Computer Science 168, 267–301 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Maass, W.: Computing with spikes. Special Issue on Foundations of Information Processing of TELEMATIK 8(1), 32–36 (2002)Google Scholar
  9. 9.
    Maass, W., Bishop, C. (eds.): Pulsed Neural Networks. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  10. 10.
    Minsky, M.: Computation – Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)zbMATHGoogle Scholar
  11. 11.
    Naksinehaboon, N., et al.: High Performance Computing Systems with Various Checkpointing Schemes. International Journal of Computers Communications & Control 4(4), 386–400 (2009)CrossRefGoogle Scholar
  12. 12.
    Păun, A., Păun, G.: Small universal spiking neural P systems. BioSystems 90(1), 48–60 (2007)CrossRefzbMATHGoogle Scholar
  13. 13.
    Paun, A., Paun, M., Rodriguez-Paton, A.: On the Hopcroft’s minimization technique for DFA and DFCA. Theoretical Computer Science 410(24-25), 2424–2430 (2009), doi:10.1016/j.tcs.2009.02.034MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Păun, G.: Membrane Computing – An Introduction. Springer, Berlin (2002)CrossRefzbMATHGoogle Scholar
  15. 15.
    Păun, G., Pérez-Jiménez, M.J., Rozenberg, G.: Spike trains in spiking neural P systems. International Journal of Foundations of Computer Science 17(4), 975–1002 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Păun, G., Pérez-Jiménez, M.J., Rozenberg, G.: Spike trains in spiking neural P systems. International Journal of Foundations of Computer Science 17(4), 975–1002 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Paun, M., Naksinehaboon, N., Nassar, R., Leangsuksun, C., Scott, S.L., Taerat, N.: Incremental Checkpoint Schemes For Weibull Failure Distribution. International Journal of Foundations of Computer Science 21(3), 329–344 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Neary, T.: On the computational complexity of spiking neural P systems. Natural Computing 9(4), 831–851 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, 3rd edn. Springer, Berlin (1997)zbMATHGoogle Scholar
  20. 20.
    Scott, S.L., et al.: A Tunable Holistic Resiliency Approach for High-Performance Computing Systems. ACM Sigplan Notices 44(4), 305–306 (2009)CrossRefGoogle Scholar
  21. 21.
    Strimbu, B.M., Innes, J.L., Strimbu, V.F.: A deterministic harvest scheduler using perfect bin-packing theorem. European Journal of Forest Research 129(5), 961–974 (2010)CrossRefGoogle Scholar
  22. 22.
    Strimbu, B.M., Hickey, G.M., Strimbu, V.G., Innes, J.L.: On the use of statistical tests with non-normaly distributed data in landscape change detection. Forest Science 55(1), 72–83 (2009)Google Scholar
  23. 23.
    Zhang, X., Zeng, X., Pan, L.: Smaller universal spiking neural P systems. Fundamenta Informaticae 87(1), 117–136 (2008)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Zhang, X., Jiang, Y., Pan, L.: Small Universal Spiking Neural P Systems with Exhaustive Use of Rule. Journal of Computational and Theoretical Nanoscience 7(5), 890–899 (2010)CrossRefGoogle Scholar
  25. 25.
    The P Systems Web Page,

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andrei Păun
    • 1
    • 2
  • Manuela Sidoroff
    • 2
  1. 1.Department of Computer ScienceLouisiana Tech UniversityRustonUSA
  2. 2.Bioinformatics DepartmentNational Institute of Research and Development for Biological SciencesBucharestRomania

Personalised recommendations