Sequentiality Induced by Spike Number in SNP Systems: Small Universal Machines
Conference paper
Abstract
In this paper we consider sequential SNP systems where the sequentiality of the system is induced by the max-spike: the neuron with the maximum number of spikes out of the neurons that can spike at one step will fire. This corresponds to a global view of the whole network that makes the system sequential. We continue the study in the direction of max-spike and show that systems with 132 neurons are universal. This improves a recent result in the area.
Keywords
Clock Cycle Spike Train Output Register Register Machine Spike Number
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Gerstner, W., Kistler, W.: Spiking Neuron Models. Single Neurons, Populations, Plasticity. Cambridge Univ. Press (2002)Google Scholar
- 2.Gottumukkala, N.R., et al.: Reliability of a System of k Nodes for High Performance Computing Applications. IEEE Transactions on Reliability 59(1), 162–169 (2010), doi:10.1109/TR.2009.2034291CrossRefGoogle Scholar
- 3.Ibarra, O.H., Păun, A., Rodriguez-Paton, A.: Sequential SNP systems based on min/max spike number. Theoretical Computer Science 410(30-32), 2982–2991 (2009)MathSciNetCrossRefMATHGoogle Scholar
- 4.Ibarra, O.H., Păun, A., Rodríguez-Patón, A.: Sequentiality Induced by Spike Number in SNP Systems. In: Goel, A., Simmel, F.C., Sosík, P. (eds.) DNA 14. LNCS, vol. 5347, pp. 179–190. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 5.Ibarra, O.H., Woodworth, S., Yu, F., Păun, A.: On Spiking Neural P Systems and Partially Blind Counter Machines. In: Calude, C.S., Dinneen, M.J., Păun, G., Rozenberg, G., Stepney, S. (eds.) UC 2006. LNCS, vol. 4135, pp. 113–129. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 6.Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta Informaticae 71(2-3), 279–308 (2006)MathSciNetMATHGoogle Scholar
- 7.Korec, I.: Small universal register machines. Theoretical Computer Science 168, 267–301 (1996)MathSciNetCrossRefMATHGoogle Scholar
- 8.Maass, W.: Computing with spikes. Special Issue on Foundations of Information Processing of TELEMATIK 8(1), 32–36 (2002)Google Scholar
- 9.Maass, W., Bishop, C. (eds.): Pulsed Neural Networks. MIT Press, Cambridge (1999)MATHGoogle Scholar
- 10.Minsky, M.: Computation – Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)MATHGoogle Scholar
- 11.Naksinehaboon, N., et al.: High Performance Computing Systems with Various Checkpointing Schemes. International Journal of Computers Communications & Control 4(4), 386–400 (2009)CrossRefGoogle Scholar
- 12.Păun, A., Păun, G.: Small universal spiking neural P systems. BioSystems 90(1), 48–60 (2007)CrossRefMATHGoogle Scholar
- 13.Paun, A., Paun, M., Rodriguez-Paton, A.: On the Hopcroft’s minimization technique for DFA and DFCA. Theoretical Computer Science 410(24-25), 2424–2430 (2009), doi:10.1016/j.tcs.2009.02.034MathSciNetCrossRefMATHGoogle Scholar
- 14.Păun, G.: Membrane Computing – An Introduction. Springer, Berlin (2002)CrossRefMATHGoogle Scholar
- 15.Păun, G., Pérez-Jiménez, M.J., Rozenberg, G.: Spike trains in spiking neural P systems. International Journal of Foundations of Computer Science 17(4), 975–1002 (2006)MathSciNetCrossRefMATHGoogle Scholar
- 16.Păun, G., Pérez-Jiménez, M.J., Rozenberg, G.: Spike trains in spiking neural P systems. International Journal of Foundations of Computer Science 17(4), 975–1002 (2006)MathSciNetCrossRefMATHGoogle Scholar
- 17.Paun, M., Naksinehaboon, N., Nassar, R., Leangsuksun, C., Scott, S.L., Taerat, N.: Incremental Checkpoint Schemes For Weibull Failure Distribution. International Journal of Foundations of Computer Science 21(3), 329–344 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 18.Neary, T.: On the computational complexity of spiking neural P systems. Natural Computing 9(4), 831–851 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 19.Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, 3rd edn. Springer, Berlin (1997)MATHGoogle Scholar
- 20.Scott, S.L., et al.: A Tunable Holistic Resiliency Approach for High-Performance Computing Systems. ACM Sigplan Notices 44(4), 305–306 (2009)CrossRefGoogle Scholar
- 21.Strimbu, B.M., Innes, J.L., Strimbu, V.F.: A deterministic harvest scheduler using perfect bin-packing theorem. European Journal of Forest Research 129(5), 961–974 (2010)CrossRefGoogle Scholar
- 22.Strimbu, B.M., Hickey, G.M., Strimbu, V.G., Innes, J.L.: On the use of statistical tests with non-normaly distributed data in landscape change detection. Forest Science 55(1), 72–83 (2009)Google Scholar
- 23.Zhang, X., Zeng, X., Pan, L.: Smaller universal spiking neural P systems. Fundamenta Informaticae 87(1), 117–136 (2008)MathSciNetMATHGoogle Scholar
- 24.Zhang, X., Jiang, Y., Pan, L.: Small Universal Spiking Neural P Systems with Exhaustive Use of Rule. Journal of Computational and Theoretical Nanoscience 7(5), 890–899 (2010)CrossRefGoogle Scholar
- 25.The P Systems Web Page, http://ppage.psystems.eu
Copyright information
© Springer-Verlag Berlin Heidelberg 2012