Advertisement

Finite dP Automata versus Multi-head Finite Automata

  • Erzsébet Csuhaj-Varjú
  • György Vaszil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7184)

Abstract

We describe a connection between dP automata (distributed P automata) and non-deterministic multi-head finite automata. We introduce the concepts of agreement languages of dP automata, and the notion of a two-way dP automaton. We demonstrate how the languages of non-deterministic one-way and two-way multi-head finite automata can be obtained as the agreement languages of one-way and two-way finite dP automata.

Keywords

Regular Language Input Symbol Input Word Membrane Computing Skin Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birget, J.-C.: Two-way automaton computations. RAIRO Informatique Théorique et Applications 24, 44–66 (1990)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Csuhaj-Varjú, E., Ibarra, O.H., Vaszil, G.: On the computational complexity of P automata. Natural Computing 5(2), 109–126 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Csuhaj-Varjú, E., Vaszil, G.: P Automata or Purely Communicating Accepting P Systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 219–233. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Csuhaj-Varjú, E., Oswald, M., Vaszil, G.: P automata. In: Păun, G., Rozenberg, G., Salomaa, A. (eds.) The Oxford Handbook of Membrane Computing, ch. 6, pp. 144–167. Oxford University Press (2010)Google Scholar
  5. 5.
    Freund, R., Kogler, M., Păun, G., Pérez-Jiménez, M.J.: On the power of P and dP automata. Annals of Bucharest University. Mathematics-Informatics Series 63, 5–22 (2009)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Hartmanis, J.: On non-determinacy in simple computing devices. Acta Informatica 1, 336–344 (1972)CrossRefzbMATHGoogle Scholar
  7. 7.
    Holzer, M., Kutrib, M., Malcher, A.: Complexity of multi-head finite automata: Origins and directions. Theoretical Computer Science 412, 83–96 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Păun, G.: Membrane Computing: An Introduction. Natural Computing Series. Springer, Berlin (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Păun, G., Pérez-Jiménez, M.J.: Solving problems in a distributed way in membrane computing: dP systems. International Journal of Computers, Communication & Control V(2), 238–250 (2010)CrossRefGoogle Scholar
  10. 10.
    Păun, G., Pérez-Jiménez, M.J.: P and dP Automata: A Survey. In: Calude, C.S., Rozenberg, G., Salomaa, A. (eds.) Maurer Festschrift. LNCS, vol. 6570, pp. 102–115. Springer, Heidelberg (2011)Google Scholar
  11. 11.
    Păun, G., Pérez-Jiménez, M.J.: An Infinite Hierarchy of Languages Defined by dP Systems (submitted)Google Scholar
  12. 12.
    Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press (2010)Google Scholar
  13. 13.
    Rabin, M.O., Scott, D.: Finite automata and their decision problems. In: Sequential Machines - Selected Papers, pp. 63–91. Addison-Wesley (1964)Google Scholar
  14. 14.
    Rosenberg, A.L.: On multi-head finite automata. IBM Journal of Research and Development 10, 388–394 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Berlin (1997)zbMATHGoogle Scholar
  16. 16.
    Wagner, K., Wechsung, G.: Computational Complexity. Reidel, Dordrecht (1986)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Erzsébet Csuhaj-Varjú
    • 1
  • György Vaszil
    • 1
  1. 1.Computer and Automation Research InstituteHungarian Academy of SciencesBudapestHungary

Personalised recommendations