Image-Based Techniques in Cultural Heritage Modeling

  • Martin Sauerbier
Conference paper
Part of the Contributions in Mathematical and Computational Sciences book series (CMCS, volume 3)


In this paper, an overview of image-based 3D modeling techniques applied to Cultural Heritage objects will be given. In two case studies we present various sensors, acquisition configurations and platforms for image acquisition and describe the image processing workflow. Additionally, actual and future developments and trends such as further automation of image processing and the combination of image-based techniques with data acquired by other sensors will be discussed. In this paper, we focus on those image-based techniques that aim for 3D reconstruction of objects and terrain from multi-image processing, though for several applications other image-based techniques can be an option as well, e.g. the generation of façade plans from single images or structured light systems for small objects and accuracies in the range of less than 100 μm.


Cultural Heritage Aerial Image Digital Surface Model Cultural Heritage Object Adobe Building 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author thanks Henri Eisenbeiss and Hannes Püschel for their work on the Landenberg project and Melanie Kunz and Mathias Flühler for their work on Túcume.


  1. 1.
    Al-kheder S, Al-shawabkeh Y, Haala N (2009) Developing a documentation system for desert palaces in Jordan using 3d laser scanning and digital photogrammetry. J Archaeol Sci 36:537–546CrossRefGoogle Scholar
  2. 2.
    Cramer M (2009) Das DGPF-Projekt zur Evaluierung digitaler photogrammetrischer Kamerasysteme. In: Tagungsband Jahrestagung DGPF, JenaGoogle Scholar
  3. 3.
    Eisenbeiss H (2009) UAV Photogrammetry. Dissertation, ETH ZurichGoogle Scholar
  4. 4.
    Eisenbeiss H, Novák D, Sauerbier M, Chapuis J, Püschel H (2009) Einsatz einer autonomen Plattform und der Irrlicht Engine für die 3D-Echtzeitvisualisierung am Beispiel von Schloss Landenberg. In: Luhmann T, Müller C (eds) Photogrammetrie – Laserscanning – Optische 3D-Messtechnik. Beiträge der Oldenburger 3D-Tage 2009. Wichmann, HeidelbergGoogle Scholar
  5. 5.
    El-Hakim S, Beraldin JA, Remondino F, Picard M, Cournoyer L, Baltsavias E (2008) Using terrestrial laser scanning and digital images for the 3D modelling of the Erechtheion, Acropolis of Athens. In: Proceedings of the DMACH conference, Amman, pp 3–16Google Scholar
  6. 6.
    Gruen A, Zhang L (2002) Automatic DTM generation from three-line-scanner (TLS) images. Bildteknik/Image Sciencen (Swedish Soc Photogramm. Rem Sens) 2002(1):33–52Google Scholar
  7. 7.
    Gruen A, Remondino F, Zhang L (2005) The Bamiyan project: multi-resolution image-based modeling. In: Baltsavias E, Gruen A, Van Gool L, Pateraki M (eds) Recording, modeling and visualization of cultural heritage. Taylor & Francis, London, pp 45–54Google Scholar
  8. 8.
    Haala N, Wolff K (2009) Digitale photogrammetrische Luftbildkamerasysteme Evaluation der automatischen Generierung von Höhenmodellen. In: Tagungsband Jahrestagung DGPF 18, JenaGoogle Scholar
  9. 9.
    Gulcin Kucukkaya A (2004) Photogrammetry and remote sensing in archeology. J Quant Spectrosc Ra 88:83–88CrossRefGoogle Scholar
  10. 10.
    Lambers K, Eisenbeiss H, Sauerbier M, Kupferschmidt D, Gaisecker Th, Sotoodeh S, Hanusch Th (2007) Combining photogrammetry and laser scanning for the recording and modelling of the Late Intermediate Period site of Pinchango Alto, Palpa, Peru. J Archaeol Sci 34:1702–1712CrossRefGoogle Scholar
  11. 11.
    Püschel H (2008) Photogrammetrische Modellierung des Schützenhauses auf der Burg Landenberg in Sarnen. Bachelor thesis, ETH ZurichGoogle Scholar
  12. 12.
    Püschel H, Sauerbier M, Eisenbeiss H (2008) A 3D Model of Castle Landenberg (CH) from combined photogrammetric processing of terrestrial and UAV images. Int Arch Photogramm Rem Sens Spatial Sci 37:93–98Google Scholar
  13. 13.
    Remondino F, El-Hakim S, Girardi S, Rizzi A, Benedetti S, Gonzo L (209) 3D Virtual reconstruction and visualization of complex architectures-The 3D-ARCH project. In: International archives of the photogrammetry, remote sensing and spatial information sciences, vol 38Google Scholar
  14. 14.
    Remondino F, El-Hakim S (2006) Image-based 3D modeling: a review. Photogramm Rec 21(115):269–291CrossRefGoogle Scholar
  15. 15.
    Remondino F, Gruen A, von Schwerin J, Eisenbeiss H, Rizzi A, Girardi St, Sauerbier M, Richards-Rissetto H (2009) Multi-sensor 3D documentation of the Maya site of Copán. In: Proceedings of the 22nd CIPA symposium, KyotoGoogle Scholar
  16. 16.
    Reulke R, Becker S, Haala N, Tempelmann U (2006) Determination and improvement of spatial resolution of the ccd-line-scanner system ads40. ISPRS J Photogramm Rem Sens 60:81–90CrossRefGoogle Scholar
  17. 17.
    Rieke-Zapp D, Tecklenburg W, Peipe J, Haig C (2009) Evaluation of the geometric stability and the accuracy potential of digital cameras – comparing mechanical stabilization versus parameterisation. ISPRS J Photogramm Rem Sens 64:248–258CrossRefGoogle Scholar
  18. 18.
    Sauerbier M, Gruen A (2007) 3D Modeling of large Cultural Heritage sites from aerial and Satellite images. In: Figueiredo A, Velho GL (eds) The world is in your eyes. Proceedings of the XXXIII computer applications and quantitative methods in archaeology conference, Tomar, pp 185–192Google Scholar
  19. 19.
    Sauerbier M, Kunz M, Flühler M, Remondino F (2004) Photogrammetric reconstruction of adobe architecture in Túcume, Peru. In: The international archives of the photogrammetry, remote sensing and spatial sciences, vol 36. On CD-ROMGoogle Scholar
  20. 20.
    Schiewe J (2003) Integration of multi-sensor data for landscape modeling using a region-based approach. ISPRS J Photogramm Rem Sens 57:371–379CrossRefGoogle Scholar
  21. 21.
    Stumpfel J, Tchou C, Yun N, Martinez P, Hawkins T, Jones A, Emerson B, Debevec P (2003) Digital reunification of the Parthenon and its sculptures. In: Proceedings of VAST, pp 41–50Google Scholar
  22. 22.
    Takase Y, Yano K, Nakaya T, Isoda Y, Tanaka S, Kawasumi T (2009) Virtual Kyoto A comprehensive reconstruction and visualization of a historical city. In: Proceedings of the 9th conference on optical 3-D measurement techniques, pp 11–20Google Scholar
  23. 23.
    Torlegard K (1992) Sensors for photogrammetric mapping: review and prospects. ISPRS J Photogramm Rem Sens 47:241–262CrossRefGoogle Scholar
  24. 24.
    Zhang B, Miller S, DeVenecia K, Walker S (2006) Automatic terrain extraction using multiple image pairs and back matching. In: ASPRS 2006 annual conference, Reno, p 40Google Scholar
  25. 25.
    Zhang L (2005) Automatic digital surface model (DSM) generation from linear array images. Ph.D. dissertation, ETH Zurich. IGP Mitteilungen Nr. 88Google Scholar
  26. 26.
    Zhang L, Gruen A (2004) Automatic DSM generation from linear array imagery data. Int Arch Photogramm, Rem Sens Spatial Inform Sci 34:128–133Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of Architecture, Institute of Historic Building Research and ConservationETH ZürichZurichSwitzerland

Personalised recommendations