Skip to main content

Automated GPU-Based Surface Morphology Reconstruction of Volume Data for Archaeology

  • Conference paper
  • First Online:
Book cover Scientific Computing and Cultural Heritage

Abstract

A sophisticated combination of noise reducing, segmentation and mesh generation methods provides the reconstruction of the surface morphology from three dimensional computed tomography scans of archaeological data as triangular surface meshes. The highly parallelized GPU-enabled implementation of the algorithm processes large data sets in only a few minutes, allowing the systematic reconstruction of various objects. Rendering of the generated triangular meshes and the calculation of the surface area and the volume of the reconstructed items or selected parts of interest, can be done in real time. Those items can also be exchanged by scientists around the world and can be investigated without manipulating the irreplaceable artifacts. The application of computed tomography and the development of archaeological adjusted post processing of the acquired volumetric data enable a non-destructive investigation of the entire object regarding shape, manufacturing techniques or material textures. The reconstructions can also serve as a basis for virtual exhibitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

All internet references visited in October 2009

  1. Andersonv T, Fell C (1995) Analysis of roman cremation vessels by computerized tomography. J Archaeol Sci 22:609–617

    Article  Google Scholar 

  2. Aumüller M, Lang R, Rainer D, Schulze-Döbold J, Werner A, Wolf P, Wössner U Covise online documentation. http://www.vis.uni-koeln.de/covise/doc/html/tutorial/

  3. Broser PJ, Eberhard S, Heumann H, Heusel A, Jungblut D, Queisser G, Schulte R, Vossen C, Wittum G The neuron reconstruction algorithm. http://www.neura.org

  4. Broser PJ, Schulte R, Roth A, Helmchen F, Waters J, Lang S, Sakmann B, Wittum G (2004) Nonlinear anisotropic diffusion filtering of three-dimensional image data from 2-photon microscopy. J Biomed Opt 9(6):1253–1264

    Article  Google Scholar 

  5. Dimitrov LI, Wenger E, Sramek M, Trinkl E, Lang-Auinger C (2006) VISAGE: an integrated environment for visualization and study of archaeological data generated by industrial computer tomography. In: The e-volution of information communication technology in cultural heritage. The 7th international symposium on virtual reality, archaeology and cultural heritage, Nicosia, pp 50–55, 30.10.–4.11.2006

    Google Scholar 

  6. Fangerau J (2009) Volume Rendering auf Grafikkarten und parallele Implementierung in Cuda. Diplomarbeit, Heidelberg University

    Google Scholar 

  7. Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering, vol 1496, Lecture notes in computer sciences. Springer, Berlin, pp 130–137

    Google Scholar 

  8. Greene A, Hartley C (2008) From analog to digital: protocols and program for a systematic digital radiography of archaeological pottery. University of Chicago

    Google Scholar 

  9. Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle W (1993) Mesh optimization. In: ACM SIGGRAPH 1993 conference proceedings, pp 19–26

    Google Scholar 

  10. Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle W (1993) Mesh optimization. TR 93-01–01, Department of Computer Science and Engineering, University of Washington

    Google Scholar 

  11. Hounsfield GN (1973) Computerized transverse axial scanning (tomography): Part I. Description of system. Brit J Radiol 46:1016–1022

    Article  Google Scholar 

  12. Jungblut D (2007) Trägheitsbasiertes Filtern mikroskopischer Messdaten unter Verwendung moderner Grafikhardware. Diplomarbeit, Heidelberg University

    Google Scholar 

  13. Jungblut D, Queisser G, Wittum G (2009) Inertia based filtering of high resolution images using a GPU cluster. Comput Vis Sci

    Google Scholar 

  14. Kuypers F (2003) Klassische Mechanik, 6th edn. Wiley-VCH, Weinheim

    Google Scholar 

  15. Lang-Auinger C (2008) Corpus Vasorum Antiquorum – Das Österreichische Projekt. Anz ÖAW, phil-hist Klasse 143:57–66

    Article  Google Scholar 

  16. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph 21(4):163–169

    Article  Google Scholar 

  17. Mat-Isa NA, Mashor MY, Othman NH (2005) Seeded region growing features extraction algorithm; its potential use in improving screening for cervical cancer. Int J Comput Internet Manage 13(1):61–70

    Google Scholar 

  18. NVidia (2008) NVidia Tesla C1060 specifications. NVidia

    Google Scholar 

  19. NVidia (2009) Cuda programming guide. Version 2.2

    Google Scholar 

  20. Orton C, Tyers P, Vince A (2001) Pottery in archaeology. In: Cambridge manuals in archaeology. Cambridge University Press, Cambridge, UK, pp 132–151

    Google Scholar 

  21. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybernetics 9(1):62–66

    Article  MathSciNet  Google Scholar 

  22. Queisser G (2008) The influence of the morphology of nuclei from hippocampal neurons on signal processing in nuclei. Dissertation, Heidelberg University

    Google Scholar 

  23. Si H TetGen A quality tetrahedral mesh generator and a 3D delaunay triangulator. http://www.tetgen.berlios.de/index.html

  24. Weickert J (1998) Anisotropic diffusion in image processing. Teubner, Stuttgart

    MATH  Google Scholar 

Download references

Acknowledgements

The research was partially supported by a grant of the Styrian government (Department 3 – science and research) and the Excellency Initiative of Heidelberg University. Thanks are due to Georg Geier, Daniel Habe and Jordis-Brit Rosc of the Austrian Foundry Research Institute at Leoben for their obliging help in course of the project. We also thank Sebastian Reiter for implementing the Hoppe mesh optimization algorithm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Jungblut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jungblut, D., Karl, S., Mara, H., Krömker, S., Wittum, G. (2013). Automated GPU-Based Surface Morphology Reconstruction of Volume Data for Archaeology. In: Bock, H., Jäger, W., Winckler, M. (eds) Scientific Computing and Cultural Heritage. Contributions in Mathematical and Computational Sciences, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28021-4_5

Download citation

Publish with us

Policies and ethics