Skip to main content

Very Long Baseline Interferometry for Geodesy and Astrometry

  • Chapter
  • First Online:
Sciences of Geodesy - II

Abstract

Very Long Baseline Interferometry (VLBI) is a microwave-based space geodetic technique that measures the difference in arrival times of signals from a radio source by cross correlation. Most commonly the observed radio sources are extragalactic objects but beacons from satellites have also been used. VLBI plays a unique role in the practical realization and maintenance of the international celestial reference frame (ICRF) and contributes significantly to the international terrestrial reference frame (ITRF), in particular for its scale. It is the only technique that provides the full set of Earth orientation parameters, which are indispensable for positioning and navigation on Earth and in space. In addition, VLBI allows access to valuable information concerning interactions within the Earth system. In particular, direct measurements of nutation parameters and of the Earth rotation angle (UT1–UTC) are uniquely provided by VLBI. Furthermore, several other geodynamic, atmospheric, and astronomical parameters can be derived from the long history of VLBI measurements starting in the late 1970s. In 1999, the International Association of Geodesy (IAG) accepted the international VLBI Service for Geodesy and Astrometry (IVS) as an official IAG service and the IVS was also approved as a service of the International Astronomical Union (IAU). Since then, the coordination of world-wide VLBI observation and analysis has improved significantly, leading to valuable results for the wider scientific community. Since 2005, the IVS has been working on a new VLBI system in terms of hardware, software, and operational procedures, known as VLBI2010. The IVS recommended a review of all current VLBI systems and processes from antennas to analysis and outlined the path to the next-generation system with unprecedented new capabilities envisaged: 1 mm position and 0.1 mm/year velocity accuracy on global scales, continuous measurements to obtain uninterrupted time series of station positions and Earth orientation parameters, and a turnaround time from the observations to initial geodetic results of less than 24 h. This new system will be realized in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A change of the frequency setup, e.g., observing on a frequency band between 2 and 14 GHz, is envisaged for the next VLBI generation, VLBI2010 (Petrachenko et al. 2009).

References

  • Abbondanza C, Sarti P (2010) Effects of illumination functions on the computation of gravity-dependent signal path variation models in primary focus and cassegrainian VLBI telescopes. J Geodesy 84(8):515–525. doi:10.1007/s00190-010-0389-z

    Article  Google Scholar 

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geodesy 85(8):457–473. doi:10.1007/s00190-011-0444-4

    Article  Google Scholar 

  • Bare CC, Clark BG, Kellerman KI, Cohen MH, Jauncey DL (1967) Interferometry experiment with independent local oscillators. Science 157:189

    Article  Google Scholar 

  • Bierman G (1977) Factorization methods for discrete sequential estimation. Academic, New York

    Google Scholar 

  • Bizouard C, Gambis D (2009) The combined solution C04 for earth orientation parameters consistent with international terrestrial reference frame. In: Drewes H (ed) Geodetic Reference Frames, vol 134. IAG Symposium, Munich, Germany, pp 265–270, 9–14 Oct 2006

    Google Scholar 

  • Böckmann S, Artz T, Nothnagel A (2010) VLBI terrestrial reference frame contributions to ITRF2008. J Geodesy 84(3):201–219

    Article  Google Scholar 

  • Böhm J (2004) Troposphärische Laufzeitverzögerungen in der VLBI. Geowissenschaftliche Mitteilungen, Heft Nr. 68, Schriftenreihe der Studienrichtung Vermessung und Geoinformation, Technische Universität Wien, ISSN 1811–8380 (in German)

    Google Scholar 

  • Böhm J, Schuh H (2007) Troposphere gradients from the ECMWF in VLBI analysis. J Geodesy 81(6–8):403–408. doi:10.1007/s00190-007-0144-2

    Article  Google Scholar 

  • Böhm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European centre for medium-range weather forecasts operational analysis data. J Geophys Res 111:B02406. doi:10.1029/2005JB003629

    Article  Google Scholar 

  • Böhm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geodesy 81(10):679–683. doi:10.1007/s00190-007-0135-3

    Article  Google Scholar 

  • Böhm J, Heinkelmann R, Mendes Cerveira PJ, Pany A, Schuh H (2009a) Atmospheric loading corrections at the observation level in VLBI analysis. J Geodesy 83(11):1107–1113. doi:10.1007/s00190-009-0329-y

    Article  Google Scholar 

  • Böhm J, Kouba J, Schuh H (2009b) Forecast Vienna mapping functions 1 for real-time analysis of space geodetic observations. J Geodesy 86(5):397–401

    Article  Google Scholar 

  • Böhm J, Hobiger T, Ichikawa R, Kondo T, Koyama Y, Pany A, Schuh H, Teke K (2010) Asymmetric tropospheric delays from numerical weather models for UT1 determination from VLBI Intensive sessions on the baseline Wettzell-Tsukuba. J Geodesy 84(5):319–325. doi:10.1007/s00190-10-0370-x

    Article  Google Scholar 

  • Böhm J, Böhm S, Nilsson T, Pany A, Plank L, Spicakova H, Teke K, Schuh (2011) The new Vienna VLBI Software VieVS. In: Kenyon S, Pacino MC, Marti U (eds) Proceedings of the 2009 IAG Symposium, Buenos Aires, Argentina, 31 Aug–4 Sept 2009, International Association of Geodesy symposia, vol 136

    Google Scholar 

  • Broten NW, Legg TH, Locke JL, McLeish CW, Richards RS, Chisholm RM, Gush RM, Yen JL, Galt JA (1967) Long baseline interferometry: a new technique. Science 156:1592

    Article  Google Scholar 

  • Brown GW, Carr TD, Block WF (1968) Long baseline interferometry of s-bursts from Jupiter. Astrophys Lett 1:89–94

    Google Scholar 

  • Campbell J (2000) From quasars to benchmarks: VLBI links heaven and earth. In: Vandenberg NR, Baver KD (eds) IVS 2000 General Meeting proceedings, NASA/CP-2000-209893, pp 19–34

    Google Scholar 

  • Capitaine N (2000) Definition of the celestial ephemeris pole and the celestial ephemeris origin. In: Johnston KJ, McCarthy DD, Luzum BJ, Kaplan GH (eds) Towards models and constants for sub-microarcsecond astrometry, U.S. Naval Observatory, pp 153–163

    Google Scholar 

  • Chen G, Herring TA (1997) Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J Geophys Res 102(B9):20489–20502

    Google Scholar 

  • Cohen MH, Jauncey DL, Kellerman KI, Clark BG (1968) Radio interferometry at one-thousandth second of arc. Science 162:88–94

    Article  Google Scholar 

  • Collioud A, Charlot P (2009) The Bordeaux VLBI image database. In: Bourda G, Charlot P, Collioud A (eds) Proceedings of the 19th European VLBI for Geodesy and Astrometry Working Meeting, Bordeaux, pp 19–22, 24–25 Mar 2009

    Google Scholar 

  • Davis JL, Herring TA, Shapiro II, Rogers AEE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20(6):1593–1607

    Article  Google Scholar 

  • Davis JL, Elgered G, Niell AE, Kuehn CE (1993) Ground-based measurement of gradients in the “wet” radio refractivity of air. Radio Sci 28(6):1003–1018

    Article  Google Scholar 

  • Dehant V, Mathews PM (2009) Earth rotation variations. In: Herring TA (ed) Treatise on Geophysics, vol 3, Elsevier, Oxford

    Google Scholar 

  • Englich S, Heinkelmann R, Schuh H (2008) Re-assessment of ocean tidal terms in high-frequency earth rotation variations observed by VLBI. In: Finkelstein A, Behrend D (eds) Measuring the future. Proceedings of the 5th IVS General Meeting, ISBN 978-5-02-025332-2, pp 314–318

    Google Scholar 

  • Eubanks TM (ed) (1991) Proceedings of the U.S. naval observatory workshop on relativistic models for use in space geodesy. U.S. Naval Observatory, Washington D.C.

    Google Scholar 

  • Fey A, Gordon D, Jacobs CS (eds) (2009) The second realization of the international celestial reference frame by very long baseline interferometry, Presented on behalf of the IERS/IVS Working Group. IERS Technical Note 35, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main

    Google Scholar 

  • Gipson J, MacMillan DS (2009) Recent modeling improvements in solve analysis. In: Bourda G, Charlot P, Collioud A (eds) Proceedings of the 19th European VLBI for Geodesy and Astrometry Working Meeting, Bordeaux, pp 54–57, 24–25 Mar 2009

    Google Scholar 

  • Gold T (1967) Radio method for the precise measurement of the rotation period of the earth. Science 157:302–304

    Article  Google Scholar 

  • Haas R et al (1999) Explanatory supplement to the section “antenna deformation’’ of the IERS conventions (1996). In: Schuh H (ed) DGFI report no. 71, pp 26–29

    Google Scholar 

  • Hawarey M, Hobiger T, Schuh H (2005) Effects on the 2nd order ionospheric terms on VLBI measurements. Geophys Res Lett 32:L11304. doi:10.1029/2005GL022729

    Article  Google Scholar 

  • Heinkelmann R (2008) Bestimmung des atmosphärischen Wasserdampfes mittels VLBI als Beitrag zur Klimaforschung. Heft Nr. 82, Schriftenreihe der Studienrichtung Vermessung und Geoinformation, Technische Universität Wien, ISSN 1811–8380 (in German)

    Google Scholar 

  • Heinkelmann R, Schuh H (2010) Very long baseline interferometry (VLBI): accuracy limits and relativistic tests. In: Klioner S, Seidelmann PK, Soffel M (eds) Proceedings of the IAU Symposium, No. 261, pp 286–290

    Google Scholar 

  • Hellings RW (1986) Relativistic effects in astronomical timing measurements. Astron J 91:650–659, Erratum, ibid. p 1446

    Google Scholar 

  • Herring TA (1992a) Submillimeter horizontal position determination using very long baseline interferometry. J Geophys Res 97:1981–1990

    Article  Google Scholar 

  • Herring TA (1992b) Modeling atmospheric delays in the analysis of space geodetic data. In: DeMunck, Spoelstra (eds) Refraction of transatmospheric signals in geodesy, Netherlands Geodetic Commission, Publications on Geodesy, No. 36, pp 157–164

    Google Scholar 

  • Herring TA, Davis JL, Shapiro II (1990) Geodesy by radio interferometry: the application of Kalman filtering to the analysis of very long baseline interferometry data. J Geophys Res 95(B8):12561–12581

    Google Scholar 

  • Herring TA, Mathews PM, Buffett BA (2002) Modeling of nutation–precession: very long baseline interferometry results. J Geophys Res 107(B4):2069

    Google Scholar 

  • Herring TA, Shapiro II, Clark TA, Ma C, Ryan JW, Schupler BR, Knight CA, Lundquist G, Shaffer DB, Vandenberg NR, Corey BE, Hinteregger HF, Rogers AEE, Webber JC, Whitney AR, Elgered G, Rönnäng BO, Davis JL (1986) Geodesy by radio interferometry: evidence for contemporary plate motion. J Geophys Res 91:8341–8347

    Article  Google Scholar 

  • Hinteregger HF, Shapiro II, Robertson DS, Knight CA, Ergas RA, Whitney AR, Rogers AEE, Moran JM, Clark TA, Burke BF (1972) Precision geodesy via radio interferometry. Science 178:396–398

    Article  Google Scholar 

  • Hobiger T (2006) VLBI as a tool to probe the ionosphere. Heft Nr. 75, Schriftenreihe der Studienrichtung Vermessung und Geoinformation, Technische Universität Wien, ISSN 1811–8380

    Google Scholar 

  • Hobiger T, Ichikawa R, Koyama Y, Kondo T (2008) Fast and accurate ray-tracing algorithms for real-time space geodetic applications using numerical weather models. J Geophys Res 113, D20302. doi:10.1029/2008JD010503.

  • Kellermann KI, Moran JM (2001) The development of high-resolution imaging in radio astronomy. Ann Rev Astron Astrophys 39:457–509

    Article  Google Scholar 

  • Klioner SA (1991) General relativistic model of VLBI observables. In: Carter WE (ed) Proceedings of AGU Chapman Conference on geodetic VLBI: monitoring global change, NOAA technical report NOS 137 NGS 49, American Geophysical Union, Washington D.C., pp 188–202

    Google Scholar 

  • Kondo T, Kimura M, Koyama Y, Osaki H (2004) Current status of software correlators developed at kashima space research center. In: Vandenberg NR, Baver KD (eds) International VLBI Service for Geodesy and Astrometry 2004 General Meeting proceedings, NASA/CP-2004-212255, pp 186–190

    Google Scholar 

  • Lambert SB, Le Poncin-Lafitte C (2009) Determining the relativistic parameter γ using very long baseline interferometry. Astron Astrophys 499:331–335. doi:10.1051/0004-6361/200911714

    Article  Google Scholar 

  • Lambert SB, Le Poncin-Lafitte C (2011) Improved determination of γ by VLBI. Astron Astrophys 529:A70. doi:10.1051/0004-6361/201016370

    Article  Google Scholar 

  • Ma C, Arias EF, Eubanks TM, Fey AL, Gontier A-M, Jacobs CS, Sovers OJ, Archinal BA, Charlot P (1998) The international celestial reference frame as realized by very long baseline interferometry. Astron J 116:516–546

    Article  Google Scholar 

  • MacMillan DS (1995) Atmospheric gradients from very long baseline interferometry observations. Geophys Res Lett 22(9):1041–1044

    Article  Google Scholar 

  • MacMillan DS, Ma C (1994) Evaluation of very long baseline interferometry atmospheric modeling improvements. J Geophys Res 99(B1):637–651

    Article  Google Scholar 

  • Mathews PM, Dehant V, Gipson JM (1997) Tidal station displacement. J Geophys Res 102(B9):20469–20477

    Article  Google Scholar 

  • Moran JM, Crowther PP, Burke BF, Barrett AH, Rogers AEE, Ball JA, Carter JC, Bare CC (1967) Spectral line interferometry with independent time standards at stations separated by 845 kilometers. Science 157:676–677

    Article  Google Scholar 

  • Niell AE, Whitney A, Petrachenko B, Schlüter W, Vandenberg N, Hase H, Koyama Y, Ma C, Schuh H, Tuccari G (2006) VLBI2010: current and future requirements for geodetic VLBI systems. IVS memorandum 2006-008v01, ftp://ivscc.gsfc.nasa.gov/pub/memos/ivs-2006-008v01.pdf

  • Nothnagel A (2009) Conventions on thermal expansion modelling of radio telescopes for geodetic and astrometric VLBI. J Geodesy 83(8):787–792

    Article  Google Scholar 

  • Nothnagel A, Vennebusch M, Campbell J (2002) On correlations between parameters in geodetic VLBI data analysis. In: Vandenberg NR, Baver KD (eds) IVS 2002 general meeting proceedings, pp 260–264

    Google Scholar 

  • Pany A, Böhm J, MacMillan DS, Schuh H, Nilsson T, Wresnik J (2010) Monte Carlo simulations of the impact of troposphere, clock and measurement errors on the repeatability of VLBI positions. J Geodesy 85(1):39–50. doi:10.1007/s00190-010-0415-1

    Article  Google Scholar 

  • Petit G (2000) Importance of a common framework for the realization of space-time reference systems. In: Rummel R, Drewes H, Bosch W, Hornik H (eds) IAG Symposium, Munich, Oct. 1998, International Association of Geodesy Symposia, vol 120, pp 3–7

    Google Scholar 

  • Petit G, Luzum B (eds) (2010) IERS Conventions 2010. IERS Technical Note no. 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main

    Google Scholar 

  • Petrachenko W et al (2009) Progress report of the IVS VLBI2010 committee. Design aspects of the VLBI2010 system. NASA/TM-2009-214180

    Google Scholar 

  • Petrov L (1999) Steps towards phase delay VLBI. In: Schlüter W, Hase H (eds) Proceedings of the 13th Working Meeting on European VLBI for Geodesy and Astrometry, Viechtach/Wettzell, pp 144–151, 12–13 Feb 1999

    Google Scholar 

  • Petrov L, Boy JP (2004) Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J Geophys Res 109:B03405

    Article  Google Scholar 

  • Petrov L, Gordon D, Gipson J, MacMillan D, Ma C, Fomalont E, Walker RC, Carabajal C (2009) Precise geodesy with the very long baseline array. J Geodesy 83(9):859–876

    Article  Google Scholar 

  • Plag H-P, Pearlman M (eds) (2009) Global Geodetic Observing System: meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin

    Google Scholar 

  • Rabbel W, Schuh H (1986) The influence of atmospheric loading on VLBI-experiments. J Geophys 59(3):164–170

    Google Scholar 

  • Richter GW, Matzner RA (1983) Second-order contributions to relativistic time delay in the parameterized post-Newtonian formalism. Phys Rev D 28:3007–3012

    Article  Google Scholar 

  • Rius A, Rodriguez J, Campbell J (1987) Geodetic VLBI with large antennas. In: Campbell J, Schuh H (eds) Mitt. Geod. Inst. Univ. Bonn, No. 72, pp 59–67

    Google Scholar 

  • Robertson DS, Carter WE, Dillinger WH (1991) New measurement of solar gravitational deflection of radio signals using VLBI. Nature 349:768–770

    Article  Google Scholar 

  • Rogers AEE (1970) Very long baseline interferometry with large effective bandwidth for phase delay measurements. Radio Sci 5:1239–1247

    Article  Google Scholar 

  • Rogers AEE (1975) A receiver phase and group delay calibrator for use in very long baseline interferometry. Haystack Observatory Technical Note, Haystack Observatory, Westford

    Google Scholar 

  • Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. The use of artificial satellites for geodesy. In: Geophysical Monograph Series 15, American Geophysical Union, pp 274–251

    Google Scholar 

  • Sarti P, Abbondanza C, Petrov L, Negusini M (2011) Height bias and scale effect induced by antenna gravitational deformations in geodetic VLBI data analysis. J Geodesy 85(1):1–8. doi:10.1007/s00190-010-0410-6

    Article  Google Scholar 

  • Scherneck H-G (1991) A parameterized solid earth tide model and ocean tide loading effects for global geodetic baseline measurements. Geophys J Int 106:677–694

    Article  Google Scholar 

  • Schlüter W, Behrend D (2007) The international VLBI service for geodesy and astrometry (IVS): current capabilities and future prospects. J Geodesy 81(6–8):379–387

    Article  Google Scholar 

  • Schuh H (1987) Die Radiointerferometrie auf langen Basen zur Bestimmung von Punktverschiebungen und Erdrotationsparametern, DGK Reihe C, Nr. 328, Verlag der Bayerischen Akademie der Wissenschaften, München

    Google Scholar 

  • Schuh H (2000) Geodetic analysis overview. In: Vandenberg NR, Baver KD (eds) IVS 2000 General Meeting proceedings, NASA/CP-2000-209893, pp 219–229

    Google Scholar 

  • Sekido M, Takiguchi H, Koyama Y, Kondo T, Haas R, Wagner J, Ritakari J, Kurihara S, Kokado K (2008) Ultra-rapid UT1 measurement by e-VLBI. Earth Planets Space 60(8):865–870

    Google Scholar 

  • Shapiro II, Knight CA (1970) Geophysical applications of long baseline radio interferometry. In: Mansinha L, Smylie DE, Beck AE (eds) Earthquake displacement fields and the rotation of the earth. Reidel, Dordrecht, pp 285–301

    Google Scholar 

  • Sillard P, Boucher C (2001) A review of algebraic constraints in terrestrial reference frame definition. J Geodesy 75(2–3):63–73

    Article  Google Scholar 

  • Snajdrova K, Böhm J, Willis P, Haas R, Schuh H (2005) Multi-technique comparison of tropospheric zenith delays derived during the CONT02 campaign. J Geodesy 79(10–11):613–623. doi:10.1007/s00190-005-0010-z

    Google Scholar 

  • Sovers OJ, Fanselow JL, Jacobs CS (1998) Astrometry and geodesy with radio interferometry: experiments, models, results. Rev Mod Phys 70(4):1393–1454

    Article  Google Scholar 

  • Spicakova H, Böhm J, Böhm S, Nilsson T, Pany A, Plank L, Teke K, Schuh H (2010) Estimation of geodetic and geodynamical parameters with VieVS. In: Behrend D, Baver K (eds) IVS 2010 General Meeting proceedings, NASA/TP-2010-215864, pp 202–206

    Google Scholar 

  • Steigenberger P, Böhm J, Tesmer V (2009) Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading. J Geodesy 83(10):943–951. doi:10.1007/s00190-009-0311-8

    Article  Google Scholar 

  • Takahashi F, Kondo T, Takahashi Y, Koyama Y (2000) Very long baseline interferometer. Wave Summit Course, Ohmsha, IOS Press, Amsterdam

    Google Scholar 

  • Teke K, Heinkelmann R, Böhm J, Schuh H (2008) VLBI baseline length repeatability tests of IVS-R1 and -R4 session types. In: Finkelstein A, Behrend D (eds) Measuring the future, Proceedings of the 5th IVS General Meeting, ISBN 978-5-02-025332-2, pp 173–177

    Google Scholar 

  • Teke K, Böhm J, Nilsson T, Schuh H, Steigenberger P, Dach R, Heinkelmann R, Willis P, Haas R, García- Espada S, Hobiger T, Ichikawa R, Shimizu S (2011) Multi-technique comparison of troposphere zenith delays and gradients during CONT08. J Geodesy 85(7):395–413. doi:10.1007/s00190-010-0434-y

    Article  Google Scholar 

  • Thompson AR, Moran JM, Swenson GW Jr (1986) Interferometry and synthesis in radio astronomy. Wiley, New York

    Google Scholar 

  • Tingay S, Alef W, Graham D, Deller AT (2009) Geodetic VLBI correlation in software. J Geodesy 83(11):1061–1069

    Article  Google Scholar 

  • Titov O (2010) VLBI2020: from reality to vision. In: Behrend D, Baver KD (eds) IVS 2010 general meeting proceedings, NASA/CP-2010-215864, pp 60–64

    Google Scholar 

  • Titov O, Schuh H (2000) Short periods in earth rotation seen in VLBI data analysed by least-squares collocation technique. In: Kolaczek B, Schuh H, Gambis D (eds) IERS Technical Note 28, Paris Observatory, pp 11–14

    Google Scholar 

  • vanDam TM, Herring TA (1994) Detection of atmospheric pressure loading using very long baseline interferometry measurements. J Geophys Res 99:4505–4517

    Article  Google Scholar 

  • Vandenberg NR (1999) Interactive/automatic scheduling program. Program reference manual, NASA Goddard Space Flight Center/NVI Inc.

    Google Scholar 

  • Whitney AR, Rogers AEE, Hinteregger HF, Knight CA, Lippincott S, Levine JI, Clark TA, Shapiro II, Robertson DS (1976) A very-long-baseline interferometer system for geodetic applications. Radio Sci 11(5):421–432

    Article  Google Scholar 

  • Wresnik J, Haas R, Böhm J, Schuh H (2007) Modeling thermal deformation of VLBI antennas with a new temperature model. J Geodesy 81(6–8):423–431

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the IVS with all its components and contributing agencies for acquiring and providing the data used in the examples given in this chapter and for the very fruitful cooperation in the past decades. The authors would like to acknowledge all individuals mentioned in this chapter and many other VLBI experts who developed the VLBI technology, correlator, and data analysis since the mid-1960s. Their continuous efforts have made it such an exciting space geodetic technique, providing scientific results of the highest quality but also producing regular measurements with highest impact on society and our Earth in general. Also, we would like to thank all members of the VLBI group at the Vienna University of Technology who contributed with their efforts to this summary; their continuous enthusiasm is advancing VLBI. We are also grateful to Brian Corey (MIT Haystack Observatory), Axel Nothnagel (University Bonn), and Ludwig Combrinck (Hartebeesthoek Radio Astronomy Observatory) for their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Schuh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schuh, H., Böhm, J. (2013). Very Long Baseline Interferometry for Geodesy and Astrometry. In: Xu, G. (eds) Sciences of Geodesy - II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28000-9_7

Download citation

Publish with us

Policies and ethics