Abstract
The linear observation equation is usually expressed aswhere the non-random design matrix \( {\user2{A}} \in R^{m \times n} , \) the vector of unknown parameters \( {\user2{x}} \in R^{n \times 1} , \) the vector of measurements \( {\user2{l}} \in R^{m \times 1} \)and contaminated by random error vector \( {\user2{e}} \) with zero mean and variance–covariance matrix \( \sigma_{0}^{2} {\user2{P}}^{ - 1} , \) where P is the weight matrix and \( \sigma_{0}^{2} \) is the variance of unit weight. If the coefficient matrix A of the observation equation possesses very large condition number, the observation equation is ill-conditioned, which is defined as ill-posed problems by Hadamard (1932). In geodesy ill-posed problems are frequently encountered in satellite gravimetry due to downward continuation, or in geodetic date procession due to the colinearity among parameters that are to be estimated. Most useful and necessary adjustment algorithms for data processing are outlined in the second part of this chapter. The adjustment algorithms discussed here include least squares adjustment, sequential application of least squares adjustment via accumulation, sequential least squares adjustment, conditional least squares adjustment, a sequential application of conditional least squares adjustment, block-wise least squares adjustment, a sequential application of block-wise least squares adjustment, a special application of block-wise least squares adjustment for code-phase combination, an equivalent algorithm to form the eliminated observation equation system and the algorithm to diagonalize the normal equation and equivalent observation equation. A priori constrained adjustment and filtering are discussed for solving the rank deficient problems. After a general discussion on the a priori parameter constraints, a special case of the so-called a priori datum method is given. A quasi-stable datum method is also discussed. A summary is given at the end of this part of the chapter.
$$ {\user2{l}} = {\user2{Ax}} + {\user2{e}} $$
(6.1)
Keywords
Mean Square Error Regularization Parameter Normal Equation Tikhonov Regularization Observation Equation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Bibliography
- Abramowitz M, Stegun IA (1965) Handbook of mathematical functions. Dover Publications Inc., New YorkGoogle Scholar
- Albertella A, Sacerdote F (1995) Spectral analysis of block averaged data in geopotential global model determination. J Geodesy 70(3):166–175CrossRefGoogle Scholar
- Arikan F, Erol CB, Arikan O (2003) Regularized estimation of vertical total electron content from global positioning system data. J Geophys Res 108(A12): SIA20/1–12Google Scholar
- Axelsson O (1994) Iterative solution methods. Cambridge University Press, CambridgeGoogle Scholar
- Ayres F (1975) Differential- und Integralrechnung, schaum’s outline. McGraw-Hill Book, New YorkGoogle Scholar
- Blewitt G (1998) GPS data processing methodology. In: Teunissen PJG, Kleusberg A (eds) GPS for geodesy. Springer, Berlin, pp 231–270CrossRefGoogle Scholar
- Bronstein IN, Semendjajew KA (1987) Taschenbuch der Mathematik.B. G. Teubner Verlagsgesellschaft, Leipzig, ISBN 3-322-00259-4Google Scholar
- Cross PA, Ramjattan AN (1995) A Kalman filter model for an integrated land vehicle navigation sys-tem. In: Proceedings of the 3rd international workshop on high precision navigation: High precision navigation 95. University of Stuttgart, April 1995, Bonn, pp 423–434Google Scholar
- Cui X, Yu Z, Tao B, Liu D (1982) Adjustment in surveying. Surveying Press, Peking, (in Chinese)Google Scholar
- Davis P, Rabinowitz P (1984) Methods of numerical integration, 2nd edn. Academic, New YorkGoogle Scholar
- Davis PJ (1963) Interpolation and approximation. Dover Publications Inc., New YorkGoogle Scholar
- Ding X, Coleman R (1996) Multiple outlier detection by evaluating redundancy contributions of observations. J Geodesy 708:489–498Google Scholar
- Faruqi FA, Turner KJ (2000) Extended Kalman filter synthesis for integrated global positioning/iner-tial navigation systems. Appl Math Comput 115(2–3):213–227CrossRefGoogle Scholar
- Gleason DM (1996) Avoiding numerical stability problems of long duration DGPS/INS Kalman filters. J Geodesy 70(5):263–275CrossRefGoogle Scholar
- Gotthardt E (1978) Einführung in die Ausgleichungsrechnung. Herbert Wichmann Verlag, KarlsruheGoogle Scholar
- Hadamard J (1932) Lecture on Cauchy’s problem in linear partial differential equations, Yale University Press, reprinted by Dover, New York, 1952Google Scholar
- Hansen P (1996) Rank-deficient and ill-posed problems, PHD thesis of the technical university of DenmarkGoogle Scholar
- Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12:55–67CrossRefGoogle Scholar
- Hostetter GH (1987) Handbook of digital signal processing, engineering applications. Academic, New YorkGoogle Scholar
- Hotine M (1991) Differential geodesy. Springer, BerlinCrossRefGoogle Scholar
- Huber PJ (1964) Robust estimation of a location parameter. Ann Math Stat 35:73–101CrossRefGoogle Scholar
- Knickmeyer ET, Knickmeyer EH, Nitschke M (1996) Zur Auswertung kinematischer Messungen mit dem Kalman-Filter. Schriftenreihe des Deutschen Vereins für Vermessungswesen, Bd. 22, Stuttgart, pp 141–166Google Scholar
- Koch KR (1980) Parameterschätzung und Hypothesentests in linearen Modellen. Dümmler-Verlag, BonnGoogle Scholar
- Koch KR (1988) Parameter estimation and hypothesis testing in linear models. Springer, BerlinGoogle Scholar
- Koch KR (1996) Robuste Parameterschätzung. Allgemeine Vermessungsnachrichten 103(1):1–18Google Scholar
- Koch KR, Yang Y (1998a) Konfidenzbereiche und Hypothesentests für robuste Parameterschätzungen. ZfV 123(1):20–26Google Scholar
- Koch KR, Yang Y (1998b) Robust Kalman filter for rank deficient observation model. J Geodesy 72:436–441CrossRefGoogle Scholar
- Lemmens R (2004) Book review: GPS—theory, algorithms and applications, Xu G 2003. Int J Appl Earth Obs Geoinf 5: 165–166Google Scholar
- Li B, Shen Y, Feng Y (2010) Fast GNSS ambiguity resolution as an ill-posed problem. J Geodesy 84:683–698CrossRefGoogle Scholar
- Ludwig R (1969) Methoden der Fehler- und Ausgleichsrechnung. Vieweg and Sohn, BraunschweigGoogle Scholar
- Masreliez CJ, Martin RD (1977) Robust Bayesian estimation for the linear model and robustifying the Kalman filter. IEEE T Automat Contr AC-22:361–371Google Scholar
- Miller K (1970) Least squares methods for ill-posed problems with a prescribed bound, SIAM J. Math Anal 1:52–74Google Scholar
- Mohamed AH, Schwarz KP (1999) Adaptive Kalman filtering for INS/GPS. J Geodesy 73:193–203CrossRefGoogle Scholar
- Morozov VA (1984) Methods for solving incorrectly posed problems. Springer, BerlinCrossRefGoogle Scholar
- Ou JK, Wang ZJ (2004) An improved regularization method to resolve integer ambiguity in rapid positioning using single frequency GPS receivers. Chinese Sci Bull 49(2):196–200CrossRefGoogle Scholar
- Reigber C, Schmidt R, Flechtner F, König R, Meyer U, Neumayer KH, Schwintzer P, Zhu SY (2005) An earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J Geodynamics 39:1–10CrossRefGoogle Scholar
- Rothacher M, Schaer S (1995) GPS-Auswertetechniken. Schriftenreihe des Deutschen Vereins für Vermessungswesen, Bd. 18, pp 107–121Google Scholar
- Schaffrin B (1980) Tikhonov regularization in geodesy, an example. Boll Geod Sci Aff 39:207–216Google Scholar
- Schaffrin B (1991) Generating robustified Kalman filters for the integration of GPS and INS. Techni-cal Report, No. 15, Institute of Geodesy, University of StuttgartGoogle Scholar
- Schaffrin B (1995) On some alternative to Kalman filtering. In: Sanso F (ed) Geodetic theory today. Springer, Berlin, pp 235–245Google Scholar
- Schaffrin B (2008) Minimum mean squared error (MSE) adjustment and the optimal Tikhonov-Phillips regularization parameter via reproducing best invariant quadratic uniformly unbiased estimates (repro-BIQUE). J. Geod 82:113–121CrossRefGoogle Scholar
- Schaffrin B, Grafarend E (1986) Generating classes of equivalent linear models by nuisance parameter elimination. Manuscr Geodaet 11:262–271Google Scholar
- Shen Y, Li B (2007) Regularized solution to fast GPS ambiguity resolution. J Surveying Eng 133(4):168–172CrossRefGoogle Scholar
- Strang G, Borre K (1997) Linear algebra, geodesy, and GPS. Cambridge Press, WellesleyGoogle Scholar
- Tarantola A (2005) Inverse problem theory. SIAM, PhildelphiaGoogle Scholar
- Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geodesy 70(1–2):65–82CrossRefGoogle Scholar
- Tikhonov AN (1963a) Regularization of ill-posed problems, English translation of Dokl. Akad Nauk SSSR 151(1):49–52Google Scholar
- Tikhonov AN (1963b) Solution of incorrectly formulated problems and the regularization method, English translation of Dokl. Akad Nauk SSSR 151(3):501–504Google Scholar
- Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problems. Wiley, New YorkGoogle Scholar
- Tikhonov AN, Goncharsky AV, Steppanov VV, Yagola AG (1995) Numerical methods for the solution of ill-posed problems. Kluwer Academic Publishers, NetherlandsGoogle Scholar
- Tsai C, Kurz L (1983) An adaptive robustifing approach to Kalman filtering. Automatica 19:279–288CrossRefGoogle Scholar
- Wahba G (1983) Bayesian “confidence intervals” for the cross-validated smoothing spline. J R Stat Soc B45:133–150Google Scholar
- Wang LX, Fang ZD, Zhang MY, Lin GB, Gu LK, Zhong TD, Yang XA, She DP, Luo ZH, Xiao BQ, Chai H, Lin DX (1979) Mathematic handbook. Educational Press, Peking. ISBN 13012-0165Google Scholar
- Wang G, Chen Z, Chen W, Xu G (1988) The principle of GPS precise positioning system. Surveying Press, Peking, p 345. ISBN 7-5030-0141-0/P.58 (in Chinese)Google Scholar
- Xu G (2002a) GPS data processing with equivalent observation equations. GPS Solutions, vol 6, No. 1–2, 6:28–33Google Scholar
- Xu G (2002b) A general criterion of integer ambiguity search. J GPS 1(2):122–131CrossRefGoogle Scholar
- Xu G (2003) A diagonalization algorithm and its application in ambiguity search. J. GPS 2(1):35–41CrossRefGoogle Scholar
- Xu G (2007) GPS–theory, algorithms and applications. Springer, Berlin, pp xix + 340Google Scholar
- Xu G, Qian Z (1986) The application of block elimination adjustment method for processing of the VLBI Data. Crustal Deformation and Earthquake, Vol. 6, No. 4, (in Chinese)Google Scholar
- Xu P (1992) Determination of surface gravity anomalies using gradiometric observables. Geophys J Int 110:321–332CrossRefGoogle Scholar
- Xu P (1998) Truncated SVD methods for discrete linear ill-posed problems. Geophys J Int 135:505–514CrossRefGoogle Scholar
- Xu P, Rummel R (1994) Generalized ridge regression with applications in determination of potential fields. Manuscr Geod 20:8–20Google Scholar
- Xu P, Shen Y, Fukuda Y, Liu Y (2006) Variance components estimation in linear inverse ill-posed models. J Geod 80:69–81CrossRefGoogle Scholar
- Yang Y (1991) Robust Bayesian estimation. B Geod 65:145–150Google Scholar
- Yang Y (1993) Robust estimation and its applications. Bayi Publishing House, PekingGoogle Scholar
- Yang Y (1994) Robust estimation for dependent observations. Manuscr Geodaet 19:10–17Google Scholar
- Yang Y (1997a) Estimators of covariance matrix at robust estimation based on influence functions. ZfV 122(4):166–174Google Scholar
- Yang Y (1997b) Robust Kalman filter for dynamic systems. J Zhengzhou Inst Surveying Mapping 14:79–84Google Scholar
- Yang Y (1999) Robust estimation of geodetic datum transformation. J Geodesy 73:268–274CrossRefGoogle Scholar
- Yang Y, Cui X (2008) Adaptively robust filter with multi adaptive factors. Surv Rev 40(309):260–270CrossRefGoogle Scholar
- Yang Y, Gao W (2005) Comparison of adaptive factors on navigation results. J Navigation 58:471–478CrossRefGoogle Scholar
- Yang Y, Gao W (2006) An optimal adaptive kalman filter with applications in navigation. J Geodesy 80:177–183CrossRefGoogle Scholar
- Yang Y, Gao W (2006) A new learning statistic for adaptive filter based on predicted residuals. Prog Nat Sci 16(8):833–837CrossRefGoogle Scholar
- Yang Y, He H, Xu G (2001) Adaptively robust filtering for kinematic geodetic positioning. J Geodesy 75:109–116CrossRefGoogle Scholar
- Yang Y, Tang Y, Li Q, Zou Y (2006) Experiments of adaptive filters for kinemetic GPS positioning applied in road information updating in GIS. J Surv Eng (in press)Google Scholar
- Yang YX et al (2005a) Combined adjustment project of national astronomical geodetic networks and 2000’ national GPS control network. Prog Nat Sci 15(5):435–441CrossRefGoogle Scholar
- Yang YX, Xu TH, Song LJ (2005) Robust estimation of variance components with application in global positioning system network adjustment. J Surv Eng ASCE 131(4): 107–112Google Scholar
- Zhou J (1985) On the Jie factor. Acta Geodaetica et Geophysica 5 (in Chinese)Google Scholar
- Zhou J (1989) Classical theory of errors and robust estimation. Acta Geod Cartogr Sinica 18:115–120Google Scholar
- Zhou J, Huang Y, Yang Y, Ou J (1997) Robust least squares method. Publishing House of Huazhong University of Science and Technology, WuhanGoogle Scholar
- Zhu J (1996) Robustness and the robust estimate. J Geodesy 70(9):586–590CrossRefGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2013