Advertisement

Regional Gravity Field Modeling: Theory and Practical Results

  • Heiner Denker
Chapter

Abstract

Geodesy, with its three core areas positioning and reference systems, Earth rotation determination, and gravity field modeling, is striving for a relative accuracy of at least 10−9 for all relevant quantities, and to a great extent this goal has already been reached (10−9 corresponds to about 6 mm relative to the Earth’s radius and \( 10^{ - 8} \,{\text{ms}}^{ - 2} = 1\,\upmu {\text{Gal}} \) in terms of gravity). Regarding gravity field modeling, the highest accuracy demands are from geodesy, especially Global Navigation Satellite System (GNNS) positioning, oceanography, and geophysics. In this context, the geoid and quasigeoid are of major interest; e.g., these quantities are required for the transformation between the purely geometric GNSS (ellipsoidal) heights and gravity field related heights as well as for the modeling of the (mean) dynamic ocean topography (DOT), requiring accuracies at the level of about 1 cm or even below. In this way, the importance of geoid and quasigeoid modelling has increased considerably—also for economic reasons—and as early as 1982 Torge (1982) postulated a “renaissance of the geoid.”

Keywords

Global Navigation Satellite System Global Navigation Satellite System Gravity Field Gravity Anomaly Geopotential Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ågren J, Svensson R (2007) Postglacial land uplift model and system definition for the new Swedish height system RH 2000. Reports in geodesy and geographical information systems, Lantmateriet, GävleGoogle Scholar
  2. Andersen EG (1976) The effect of the topography on solution of Stokes’ problem. Unisurv S-14, SydneyGoogle Scholar
  3. Andersen EG, Rizos C, Mather RS (1975) Atmospheric effects in physical geodesy. Unisurv G-23, Sydney, pp 23–41Google Scholar
  4. Andersen OB, Knudsen P, Berry PAM (2010) The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J Geod 84:191–199CrossRefGoogle Scholar
  5. Andersen OB, Knudsen P, Trimmer R (2005) Improved high resolution altimetric gravity field mapping (KMS2002 global marine gravity field). In: Sansò F (ed) A window on the future of geodesy, IAG symposia, vol 128. Springer-Verlag, Berlin, Heidelberg, pp 326–331Google Scholar
  6. Angermann D, Seitz M, Drewes H (2012) Global terrestrial reference systems and their realizations. Sciences of geodesy—II, this volume. Springer-Verlag, Berlin, HeidelbergGoogle Scholar
  7. Bäumker M (1984) Zur dreidimensionalen Ausgleichung von terrestrischen und Satellitenbeobachtungen. Wiss. Arb. d. Fachr. Verm.wesen d. Univ. Hannover, Nr. 130, HannoverGoogle Scholar
  8. Behrend D (1999) Untersuchungen zur Schwerefeldbestimmung in den europäischen Randmeeren. Wiss. Arb. d. Fachr. Verm.wesen d. Univ. Hannover, Nr. 229, HannoverGoogle Scholar
  9. Bian S (1997) Some cubature formulas for singular integrals in physical geodesy. J Geod 71:443–453CrossRefGoogle Scholar
  10. BIPM (2006) Le Système international d’unités—The International System of Units (SI), 8th edn. Bureau international des poids et measures, Sèvres, FranceGoogle Scholar
  11. Bosch W, Savcenko R (2010) On estimating the dynamic ocean topography—a profile based approach. In: Mertikas SP (ed) Gravity, geoid and earth observation, IAG symposia, vol 135. Springer-Verlag, Berlin, Heidelberg, pp 263–269Google Scholar
  12. Bürki B, Müller A, Kahle H-G (2004) DIADEM: the new digital astronomical deflection measuring system for high-precision measurements of deflections of the vertical at ETH Zurich. In: Proceedings of gravity, geoid and space missions, GGSM 2004, IAG symposia, Porto, Portugal, 30 Aug–3 Sept (CD)Google Scholar
  13. Bursa M, Groten E, Kenyon S, Kouba J, Radej K, Vatrt V, Voytiskova M (2002) Earth’s dimension specified by geoidal potential. Stud Geophys Geod 46:1–8CrossRefGoogle Scholar
  14. Bursa M, Kenyon S, Kouba J, Radej K, Vatrt V, Voytiskova M (2001) In: Drewes H, Dodson A, Fortes LPS, Sanchez L, Sandoval P (eds) Vertical reference system, IAG symposia, vol 124. Springer-Verlag, Berlin, Heidelberg, pp 291–296Google Scholar
  15. Campbell J (1971) Eine Erweiterung der Theorie des astronomischen Nivellements bei Einbeziehung von Schweremessungen. Wiss. Arb. d. Lehrstühle f. Geodäsie, Photogrammetrie und Kartographie a. d. Techn. Univ. Hannover, Nr. 49, HannoverGoogle Scholar
  16. Cazenave A, Chen J (2010) Time-variable gravity from space and present-day mass redistribution in the earth system. Earth Planet Sci Lett 298:263–274CrossRefGoogle Scholar
  17. Christie RR (1994) A new geodetic heighting strategy for Great Britain. Surv Rev 32:328–343CrossRefGoogle Scholar
  18. Christodoulidis DC (1979) Influence of the atmospheric masses on the gravitational field of the Earth. Bull Géod 53:61–77CrossRefGoogle Scholar
  19. Condi F, Wunsch C (2004) Gravity field variability, the geoid, and ocean dynamics. In: Sansò F (ed) V Hotine-Marussi symposium on mathematical geodesy, IAG symposia, vol 127. Springer-Verlag, Berlin, Heidelberg, pp 285–292Google Scholar
  20. Demianov GV, Majorov AN (2004) On the definition of a common world normal height system. In: Physical geodesy, scientific and technical reports on geodesy, photogrammetry and cartography, Federal Office of Geodesy and Cartography (Roskartographia), ZNIIGAiK, Moscow, pp 168–182 (in Russian)Google Scholar
  21. Denker H (1988) Hochauflösende regionale Schwerefeldbestimmung mit gravimetrischen und topographischen Daten. Wiss. Arb. d. Fachr. Verm.wesen d. Univ. Hannover, Nr. 156, HannoverGoogle Scholar
  22. Denker H (1989) A new gravimetric quasigeoid for the Federal Republic of Germany. Deutsche Geodät. Komm., Reihe B, Nr. 291, MünchenGoogle Scholar
  23. Denker H (1998) Evaluation and improvement of the EGG97 quasigeoid model for Europe by GPS and leveling data. In: Vermeer M, Ádám J (eds) Second continental workshop on the geoid in Europe, Proceedings Rep. Finnish Geod. Inst., vol 98, issue 4, Masala, pp 53–61Google Scholar
  24. Denker H (2001) On the effect of datum inconsistencies in gravity and position on Europen geoid computations. Poster, IAG 2001 scientific assembly, 2–7 Sept 2001, BudapestGoogle Scholar
  25. Denker H (2003) Computation of gravity gradients over Europe for calibration/validation of GOCE data. In: Tziavos IN (ed) Gravity and geoid 2002, 3rd Meeting of the Internat. Gravity and Geoid Commission, Ziti Editions, Thessaloniki, pp 287–292Google Scholar
  26. Denker H (2005) Evaluation of SRTM3 and GTOPO30 terrain data in Germany. In: Jekeli C, Bastos L, Fernandes J (eds) Gravity, geoid and space missions, IAG symposia, vol 129. Springer-Verlag, Berlin, Heidelberg, pp 218–223Google Scholar
  27. Denker H, Barriot J-P, Barzaghi R, Fairhead D, Forsberg R, Ihde J, Kenyeres A, Marti U, Sarrailh M, Tziavos IN (2009) The development of the European gravimetric geoid model EGG07. In: Sideris MG (ed) Observing our changing earth, IAG symposia, vol 133. Springer-Verlag, Berlin, Heidelberg, pp 177–186Google Scholar
  28. Denker H, Barriot J-P, Barzaghi R, Forsberg R, Ihde J, Kenyeres A, Marti U, Tziavos IN (2005) Status of the European gravity and geoid project EGGP. In: Jekeli C, Bastos L, Fernandes J (eds) Gravity, geoid and space missions, IAG symposia, vol 129. Springer-Verlag, Berlin, Heidelberg, pp 125–130Google Scholar
  29. Denker H, Roland M (2005) Compilation and evaluation of a consistent marine gravity data set surrounding Europe. In: Sansò F (ed) A window on the future of geodesy, IAG symposia, vol 128. Springer-Verlag, Berlin, Heidelberg, pp 248–253Google Scholar
  30. Denker H, Torge W (1998) The European gravimetric quasigeoid EGG97—An IAG supported continental enterprise. In: Forsberg R, Feissel M, Dietrich R (eds) Geodesy on the move—Gravity, geoid, geodynamics and Antarctica, IAG symposia, vol 119. Springer-Verlag, Berlin, Heidelberg, pp 249–254Google Scholar
  31. Denker H, Tziavos IN (1999) Investigation of the Molodensky series terms for terrain reduced gravity field data. Boll Geof Teor Appl 40:195–203Google Scholar
  32. Denker H, Wenzel H-G (1987) Local geoid determination and comparison with GPS results. Bull Géod 61:349–366CrossRefGoogle Scholar
  33. Duquenne H, Duquenne F, Rebischung P (2007) New scientific levelling network NIREF. Data set and internal report, prepared for European gravity and geoid project (EGGP)Google Scholar
  34. Ecker E, Mittermayer E (1969) Gravity corrections for the influence of the atmosphere. Boll Geof Teor Appl 11:70–80Google Scholar
  35. Eeg J, Krarup T (1973) Integrated geodesy. The Danish Geodetic Institute, Internal Rep. No. 7, CopenhagenGoogle Scholar
  36. Ekman M (1989a) The impact of geodynamic phenomena on systems for height and gravity. In: Andersen OB (ed) Modern techniques in geodesy and surveying, National Survey and Cadastre, KMS, Denmark, Publ. 4. Series vol. 1. Copenhagen, Denmark, pp 109–167Google Scholar
  37. Ekman M (1989b) Impacts of geodynamic phenomena on systems for height and gravity. Bull Géod 63:281–296CrossRefGoogle Scholar
  38. Ekman M (1996) The permanent problem of the permanent tide: what to do with it in geodetic reference systems? Marées Terrestres. Bull d’Inf 125:9508–9513 (Bruxelles)Google Scholar
  39. Elhabiby M, Sampietro D, Sansò F, Sideris MG (2009) BVP, global models and residual terrain correction. In: Sideris MG (ed) Observing our changing earth, IAG symposia, vol 133. Springer-Verlag, Berlin, Heidelberg, pp 211–217Google Scholar
  40. ESA (1999) Gravity field and steady-state ocean circulation mission. Reports for mission selection, the four candidate earth explorer core missions, ESA SP-1233(1)Google Scholar
  41. Featherstone WE, Kirby JF, Hirt C, Filmer MS, Claessens SJ, Brown NJ, Hu G, Johnston GM (2011) The AUSGeoid09 model of the Australian height datum. J Geod 85:133–150CrossRefGoogle Scholar
  42. Flechtner F, Thomas M, Dobslaw H (2010) Improved non-tidal atmospheric and oceanic de-aliasing for GRACE and SLR satellites. In: Flechtner F, Gruber Th, Güntner A, Mandea M, Rothacher M, Schöne T, Wickert J (eds) System earth via geodetic-geophysical space techniques, advanced technologies in earth sciences. Springer-Verlag, Berlin, pp 131–142CrossRefGoogle Scholar
  43. Flury J, Rummel R (2009) On the geoid-quasigeoid separation in mountain areas. J Geod 83:829–847CrossRefGoogle Scholar
  44. Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modeling. Report Department of Geodetic Science, no 355, The Ohio State University, Columbus, Ohio, USAGoogle Scholar
  45. Forsberg R (1987) A new covariance model for inertial gravimetry and gradiometry. J Geophys Res B 92:1305–1310CrossRefGoogle Scholar
  46. Forsberg R (1993) Modelling of the fine-structure of the geoid: methods, data requirements and some results. Surv Geophys 14:403–418CrossRefGoogle Scholar
  47. Forsberg R (2010) Geoid determination in the mountains using ultra-high resolution spherical harmonic models—the Auvergne case. In: Contadakis ME, Kaltsikis C, Spatalas S, Tokmakidis K, Tziavos IN (eds) The apple of the knowledge, In Honor of Professor Emeritus Demetrius N. Arabelos, pp 101–111. Ziti Editions (ISBN: 978-960-243-674-5), ThessalonikiGoogle Scholar
  48. Forsberg R, Kenyon S (2004) Gravity and geoid in the Arctic region—the northern GOCE polar gap filled. In: Proceedings of 2nd international GOCE workshop, Esrin, 8–10 March 2004, CD-ROMGoogle Scholar
  49. Forsberg R, Tscherning CC (1981) The use of height data in gravity field approximation. J Geophys Res B 86:7843–7854CrossRefGoogle Scholar
  50. Forsberg R, Tscherning CC (1997) Topographic effects in gravity field modelling for BVP. In: Sansò F, Rummel R (eds) Geodetic boundary value problems in view of the one centimeter geoid, Lecture notes in earth sciences, vol 65. Springer-Verlag, Berlin, Heidelberg, pp 241–272Google Scholar
  51. Förste C, and 12 others (2008a) The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J Geod 82:331–346Google Scholar
  52. Förste C, and 12 others (2008b) EIGEN-GL05C—a new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. In: General assembly European Geosciences Union (Vienna, Austria 2008), Geophysical research abstracts, vol 10, Abstract No. EGU2008-A-06944Google Scholar
  53. Gitlein O, Timmen L (2006) Atmospheric mass flow reduction for terrestrial absolute gravimetry in the Fennoscandian land uplift network. In: Tregoning P, Rizos C (eds) Dynamic planet, IAG symposia, vol 130. Springer-Verlag, Berlin, Heidelberg, pp 461–466Google Scholar
  54. Goad CC, Tscherning CC, Chin MM (1984) Gravity empirical covariance values for the continental United States. J Geophys Res B 89:7962–7968CrossRefGoogle Scholar
  55. Grafarend EW (1978a) The definition of the telluroid. Bull Géod 52:25–37CrossRefGoogle Scholar
  56. Grafarend EW (1978b) Operational geodesy. In: Moritz H, Sünkel H (eds) Approximation methods in geodesy, Sammlung Wichmann, Neue Folge, Bd. 10, H. Wichmann Verlag, Karlsruhe, pp 235–284Google Scholar
  57. Grafarend EW (1988) The geometry of the Earth’s surface and the corresponding function space of the terrestrial gravitational field. In: Festschrift Rudolf Sigl zum 60. Geburtstag, Deutsche Geod. Komm., Reihe B, Heft Nr. 287, pp 76–94 (München)Google Scholar
  58. Grote T (1996) Regionale Quasigeoidmodellierung aus heterogenen Daten mit “cm”-Genauigkeit. Wiss. Arb. d. Fachr. Verm.wesen d. Univ. Hannover, Nr. 212, HannoverGoogle Scholar
  59. Haagmans R, de Min E, von Gelderen M (1993) Fast evaluation of convolution integrals on the sphere using 1D FFT, and a comparison with existing methods for Stokes’ integral. Manuscripta geodaetica 18:227–241Google Scholar
  60. Haagmans R, Prijatna K, Omang O (2003) An alternative concept for validation of GOCE gradiometry results based on regional gravity. In: Tziavos IN (ed) Gravity and geoid 2002, 3rd meeting of the Internat. Gravity and Geoid commission, pp 281–286, Ziti Editions, Thessaloniki Google Scholar
  61. Heck B (1986) A numerical comparison of some telluroid mappings. In: Proceedings of I Hotine-Marussi symposium on mathematical geodesy (Roma, 3–6 June 1985), vol. 1. Milano, pp 19–38Google Scholar
  62. Heck B (1990) An evaluation of some systematic error sources affecting terrestrial gravity anomalies. Bull Géod 64:88–108CrossRefGoogle Scholar
  63. Heck B (1991) On the linearized boundary value problems of physical geodesy. Report Department of Geodetic Science and Surveying, no 407, The Ohio State University, Columbus, Ohio, USAGoogle Scholar
  64. Heck B (1997) Formulation and linearization of boundary value problems: from observables to a mathematical model. In: Sansò F, Rummel R (eds) Geodetic boundary value problems in view of the one centimeter geoid, Lecture notes in earth sciences, vol 65. Springer-Verlag, Berlin, Heidelberg, pp 121–160Google Scholar
  65. Heck B (2003) Rechenverfahren und Auswertemodelle der Landesvermessung—Klassische und moderne Methoden, 3rd edn. Wichmann Verlag, HeidelbergGoogle Scholar
  66. Heck B (2004) Problems in the definition of vertical reference frames. In: Sansò F (ed) V Hotine-Marussi symposium on mathematical geodesy, IAG symposia, vol 127. Springer-Verlag, Berlin, Heidelberg, pp 164–173Google Scholar
  67. Heck B, Rummel R (1990) Strategies for solving the vertical datum problem using terrestrial and satellite geodetic data. In: Sünkel H, Baker T (eds) Sea surface topography and the geoid, IAG symposia, vol 104. Springer-Verlag, Berlin, Heidelberg, pp 116–128Google Scholar
  68. Heck B, Seitz K (2007) A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modeling. J Geod 81:121–136CrossRefGoogle Scholar
  69. Hein GW (1986) Integrated geodesy—state-of-the-art 1986 reference text. In: Sünkel H (ed) Mathematical and numerical techniques in physical geodesy, lecture notes in earth sciences, vol 7. Springer-Verlag, Berlin, Heidelberg, pp 505–548Google Scholar
  70. Heiskanen WA, Moritz H (1967) Physical geodesy. W.H. Freeman and Company, San FranciscoGoogle Scholar
  71. Hipkin RG (2004) Ellipsoidal geoid computation. J Geod 78:167–179CrossRefGoogle Scholar
  72. Hipkin R, Haines K, Beggan C, Bingley R, Hernandez F, Holt J, Baker T (2004) The geoid EDIN2000 and mean sea surface topography around the British Isles. Geophys J Int 157:565–577CrossRefGoogle Scholar
  73. Hirt C (2004) Entwicklung und Erprobung eines digitalen Zenitkamerasystems für die hochpräzise Lotabweichungsbestimmung. Wiss. Arb. d. Fachr. Verm.wesen d. Univ. Hannover, Nr. 253, HannoverGoogle Scholar
  74. Hirt C, Feldmann-Westendorff U, Denker H, Flury J, Jahn C-H, Lindau A, Seeber G, Voigt C (2008) Hochpräzise Bestimmung eines astrogeodätischen Quasigeoidprofils im Harz für die Validierung des Quasigeoidmodells GCG05. Zeitschrift f. Verm.wesen (zfv) 133:108–119Google Scholar
  75. Hirt C, Flury J (2008) Astronomical-topographic levelling using high-precision astrogeodetic vertical deflections and digital terrain model data. J Geod 82:231–248CrossRefGoogle Scholar
  76. Hirt C, Seeber G (2008) Accuracy analysis of vertical deflection data observed with the Hannover digital zenith camera system TZK2-D. J Geod 82:347–356CrossRefGoogle Scholar
  77. Hirt C, Schmitz M, Feldmann-Westendorff U, Wübbena G, Jahn C-H, Seeber G (2010) Mutual validation of GNSS height measurements from high-precision geometric-astronomical levelling. GPS Solutions 15:149–159CrossRefGoogle Scholar
  78. Hotine M (1969) Mathematical geodesy. ESSA Monograph 2, U.S. Department of Commerce, WashingtonGoogle Scholar
  79. IAG (1970) Geodetic reference system 1967. Publ. Spéciale du Bull Géod, ParisGoogle Scholar
  80. IAG (1984) Resolutions of the XVIII general assembly of the International Association of Geodesy, Hamburg, Germany, 15–27 Aug 1983. J Geod 58:309–323Google Scholar
  81. IERS (2010) IERS conventions (2010). In: Petit G, Luzum B (eds) IERS technical note no. 36, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  82. Ihde J (2009) Inter-commission project 1.2: vertical reference frames. In: Drewes H, Hornik H (eds) International Association of Geodesy, Travaux, vol 36Google Scholar
  83. Ihde J, Adam J, Gurtner W, Harsson BG, Sacher M, Schlüter W, Wöppelmann G (2000) The height solution of the European vertical reference network (EUVN). Veröff. Bayer. Komm. für die Internat. Erdmessung, Astronom. Geod. Arb., Nr. 61, München pp 132–145Google Scholar
  84. Ihde J, Mäkinen J, Sacher M (2008) Conventions for the definition and realization of a European vertical reference system (EVRS)—EVRS conventions 2007. EVRS conventions V5.1, Bundesamt für Kartographie und Geodäsie, Finnish Geodetic Institute, publication date 17 Dec 2008Google Scholar
  85. Ihde J, Sanchez L (2005) A unified global height reference system as a basis for IGGOS. J Geodyn 40:400–413CrossRefGoogle Scholar
  86. Ihde J, Wilmes H, Müller J, Denker H, Voigt C, Hosse M (2010) Validation of satellite gravity field models by regional terrestrial data sets. In: Flechtner F, Gruber Th, Güntner A, Mandea M, Rothacher M, Schöne T, Wickert J (eds) System earth via geodetic-geophysical space techniques, advanced technologies in earth sciences. Springer-Verlag, Berlin, pp 277–296CrossRefGoogle Scholar
  87. Jekeli C (1983) A numerical study of the divergence of the spherical harmonic series of the gravity and height anomalies at the Earth’s surface. Bull Géod 57:10–28CrossRefGoogle Scholar
  88. Jekeli C (2009) Potential theory and static gravity field of the Earth. In: Herring T (vol ed) Treatise on geophysics, vol 3, Geodesy. Elsevier, Amsterdam, pp 11–42Google Scholar
  89. Jekeli C, Yang HJ, Kwon JH (2009) Evaluation of EGM08—globally and locally in South Korea. In: External quality evaluation reports of EGM08, Newton’s Bulletin, vol 4, pp 38–49Google Scholar
  90. JPL (2007) SRTM—The mission to map the world. Jet Propulsion Laboratory, California Institute of Technology. http://www2.jpl.nasa.gov/srtm/index.html
  91. Kaula WM (1966) Theory of satellite geodesy. Blaisdell Publ. Comp., Waltham (Mass.)Google Scholar
  92. Kellog OD (1953) Foundations of potential theory. Dover Publ. Inc., New YorkGoogle Scholar
  93. Kelsey J (1972) Geodetic aspects concerning possible subsidence in Southeastern England. Phil Trans R Soc Lond 272:141–149. doi: 10.1098/rsta.1972.0040 CrossRefGoogle Scholar
  94. Kenyeres A, Sacher M, Ihde J, Denker H, Marti U (2010) EUVN Densification action—final report. http://www.bkg.bund.de/nn_166762/geodIS/EVRS/EN/Projects/02EUVN-DA/01Introduction/introduction__node.html__nnn=true
  95. Kern M (2004) A comparison of data weighting methods for the combination of satellite and local gravity data. In: Sansò F (ed) V Hotine-Marussi Symposium on mathematical geodesy, IAG symposia, vol 127. Springer-Verlag, Berlin, Heidelberg, pp 137–144Google Scholar
  96. Kovalevsky J, Seidelmann PK (2004) Fundamentals of astrometry. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  97. Krarup T (1969) A contribution to the mathematical foundation of physical geodesy. Geodætisk Institut, Meddelelse No. 44, CopenhagenGoogle Scholar
  98. Kumar M (2005) When ellipsoidal heights will do the job, why look elsewhere? Surv Land Inf Sci 65:91–94Google Scholar
  99. Kurtenbach E, Mayer-Gürr T, Eicker A (2009) Deriving daily snapshots of the Earth’s gravity field from GRACE L1B data using Kalman filtering. Geophys Res Lett 36:L17102. doi: 10.1029/2009GL039564 CrossRefGoogle Scholar
  100. Lemoine FG, and 14 others (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. NASA/TP-1998-206861, Greenbelt, MD, USAGoogle Scholar
  101. Li YC, Sideris MG, Schwarz K-P (1995) A numerical investigation on height anomaly prediction in mountainous areas. Bull Géod 69:143–156CrossRefGoogle Scholar
  102. Liebsch G, Schirmer U, Ihde J, Denker H, Müller J (2006) Quasigeoidbestimmung für Deutschland. DVW-Schriftenreihe 49:127–146Google Scholar
  103. MacMillan WD (1958) Theoretical mechanics, vol 2., The theory of the potential. Dover Publ. Inc., New YorkGoogle Scholar
  104. Mäkinen J, Ihde J (2009) The permanent tide in height systems. In: Sideris MG (ed) Observing our changing earth, IAG symposia, vol 133. Springer-Verlag, Berlin, Heidelberg, pp 81–87Google Scholar
  105. Marti U, Schlatter A (2001) The new height system in Switzerland. In: Drewes H, Dodson A, Fortes LPS, Sanchez L, Sandoval P (eds) Vertical reference system, IAG symposia, vol 124. Springer-Verlag, Berlin, Heidelberg, pp 50–55Google Scholar
  106. Marussi A (1985) Intrinsic geodesy. Springer-Verlag, BerlinCrossRefGoogle Scholar
  107. Mayer-Gürr T (2006) Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE. Dissertation, University of BonnGoogle Scholar
  108. Mayer-Gürr T, Kurtenbach E, Eicker A (2010) ITG-Grace2010 gravity field model. URL: www.igg.uni-bonn.de/apmg/index.php
  109. Meschkowski H (1962) Hilbertsche Räume mit Kernfunktionen. Springer-Verlag, BerlinCrossRefGoogle Scholar
  110. Mohr PJ, Taylor BN, Newell DB (2008) CODATA recommended values of the fundamental physical constants: 2006. Rev Mod Phys 80:633–730CrossRefGoogle Scholar
  111. Molodenskii MS, Eremeev VF, Yurkina MI (1962) Methods for study of the external gravitational field and figure of the Earth. Translation of the Russian Book, Israel Program for Scientific Translations, JerusalemGoogle Scholar
  112. Morelli C, Pisani M, Gantar C (1975) Geophysical anomalies and tectonics in the Western Mediterranean. Boll Geof Teor Appl 18(67):211–249 (Trieste)Google Scholar
  113. Moritz H (1962) Interpolation and prediction of gravity and their accuracy. Report Department of Geodetic Science, no. 24, The Ohio State University, Columbus, Ohio, USAGoogle Scholar
  114. Moritz H (1971) Kinematical geodesy II. Report Department of Geodetic Science, no. 165, The Ohio State University, Columbus, Ohio, USAGoogle Scholar
  115. Moritz H (1976) Integral formulas and collocation. Manuscripta Geod 1:1–40Google Scholar
  116. Moritz H (1980) Advanced physical geodesy. Wichmann, KarlsruheGoogle Scholar
  117. Moritz H (2000) Geodetic reference system 1980. J Geod 74:128–133CrossRefGoogle Scholar
  118. Morse PM, Feshbach H (1953) Methods of theoretical physics. McGraw-Hill, New YorkGoogle Scholar
  119. Müller J, Soffel M, Klioner SA (2008) Geodesy and relativity. J Geod 82:133–145CrossRefGoogle Scholar
  120. NIMA (1997) Department of Defense World Geodetic System 1984—its definition and relationships with local geodetic datums. NIMA National Imagery and Mapping Agency, Technical Report, NIMA TR8350.2, 3rd Edition, 4 July 1997 (Amendment 1, 3 Jan. 2000; Amendment 2, 23 June 2004)Google Scholar
  121. NIMA (2002) Addendum to NIMA TR 8350.2: implementation of the World Geodetic System 1984 (WGS 84) reference frame G1150. http://earth-info.nga.mil/GandG/publications/tr8350.2/tr8350_2.html
  122. Omang OCD, Tscherning CC, Forsberg R (2012) Generalizing the harmonic reduction procedure in residual topographic modeling. In: Sneeuw N, Novák P, Crespi M, Sansò F (eds) VII Hotine-Marussi symposium on mathematical geodesy, IAG symposia, vol 137. Springer-Verlag, Berlin, Heidelberg, pp 233–238Google Scholar
  123. Pail R, Bruinsma S, Migliaccio F, Foerste C, Goiginger H, Schuh W-D, Hoeck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansò F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geod 85:819–843CrossRefGoogle Scholar
  124. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An earth gravitational model to degree 2160: EGM2008. Presentation, 2008 general assembly of the European Geosciences Union, Vienna, Austria, 13–18 Apr 2008Google Scholar
  125. Poutanen M, Vermeer M, Mäkinen J (1996) The permanent tide in GPS positioning. J Geod 70:499–504Google Scholar
  126. Rapp RH (I983a) The need and prospects for a world vertical datum. In: Proceedings lAG symposia, IUGG XVIII General Assembly, Hamburg, FRG, 1983, vol 2. Report Department of Geodetic Science and Surveying. The Ohio State University, Columbus, Ohio, USA, pp 432-445Google Scholar
  127. Rapp RH (1983b) Tidal gravity computations based on recommendations of the standard earth tide committee. Bull. d’Inf., Marées Terrestres 89: 5814–5819 (Bruxelles)Google Scholar
  128. Rapp RH (1995) A world vertical datum proposal. Allg Verm Nachr 102:297–304Google Scholar
  129. Rapp RH (1997) Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference. J Geod 71:282–289CrossRefGoogle Scholar
  130. Rapp RH, Balasubramania N (1992) A conceptual formulation of a world height system. Report Department of Geodetic Science and Surveying, no. 421. The Ohio State University, Columbus, Ohio, USAGoogle Scholar
  131. Rapp RH, Nerem RS, Shum CK, Klosko SM, Williamson RG (1991) Consideration of permanent tidal deformation in the orbit determination and data analysis for the Topex/Poseidon mission. NASA Technical Memorandum 100775, Goddard Space Flight Center, Greenbelt, MD, USAGoogle Scholar
  132. Rebischung P, Duquenne H, Duquenne F (2008) The new French zero-order levelling network—first global results and possible consequences for UELN. EUREF 2008 symposium, Brussels, Belgium, 18–21 June 2008Google Scholar
  133. Rummel R (1988) Zur iterativen Lösung der geodätischen Randwertaufgabe. In: Festschrift Rudolf Sigl zum 60. Geburtstag, Deutsche Geod. Komm., Reihe B, Heft Nr. 287, pp 175–181 (München)Google Scholar
  134. Rummel R (1995) The first degree harmonics of the Stokes problem—what are the practical implications? In: Festschrift E. Groten on the occasion of his 60th anniversary, pp 98–106 (Munich)Google Scholar
  135. Rummel R (1997) Spherical spectral properties of the Earth’s gravitational potential and its first and second derivatives. In: Sansò F, Rummel R (eds) Geodetic boundary value problems in view of the one centimeter geoid, lecture notes in earth sciences, vol 65. Springer-Verlag, Berlin, Heidelberg, pp 359–404Google Scholar
  136. Rummel R, Rapp RH (1976) The influence of the atmosphere on geoid and potential coefficient determinations from gravity data. J Geophys Res 81:5639–5642CrossRefGoogle Scholar
  137. Rummel R, Teunissen P (1988) Height datum definition, height datum connection and the role of the geodetic boundary value problem. Bull Géod 62:477–498CrossRefGoogle Scholar
  138. Rummel R, van Gelderen M (1995) Meissl scheme—spectral characteristics of physical geodesy. Manuscripta Geod 20:379–385Google Scholar
  139. Rummel R, Weijong Y, Stummer C (2011) GOCE gravitational gradiometry. J Geod 85:777–790CrossRefGoogle Scholar
  140. Sanchez L (2008) Approach for the establishment of a global vertical reference level. In: Xu P, Liu J, Dermanis A (eds) VI Hotine-Marussi symposium on theoretical and computational geodesy, IAG symposia, vol 132. Springer-Verlag, Berlin, Heidelberg, pp 119–125Google Scholar
  141. Sandwell DT, Smith WHF (2009) Global marine gravity from retracked Geosat and ERS-1 altimetry: ridge segmentation versus spreading rate. J Geophys Res B 114:B01411. doi: 10.1029/2008JB006008 CrossRefGoogle Scholar
  142. Sansò F (1986) Statistical methods in physical geodesy. In: Sünkel H (ed) Mathematical and numerical techniques in physical geodesy, lecture notes in earth sciences, vol 7. Springer-Verlag, Berlin, Heidelberg, pp 49–155Google Scholar
  143. Sansò F (1995) The long road from measurements to boundary value problems in physical geodesy. Manuscripta Geod 20:326–344Google Scholar
  144. Sansò F, Tscherning CC (2003) Fast spherical collocation: theory and examples. J Geod 77:101–112CrossRefGoogle Scholar
  145. Schwarz KP, Sideris MG, Forsberg R (1990) The use of FFT techniques in physical geodesy. Geophys J Int 100:485–514CrossRefGoogle Scholar
  146. Seitz K (1997) Ellipsoidische und topographische Effekte im geodätischen Randwertproblem. Deutsche Geod. Komm., Reihe C, Nr. 483, MünchenGoogle Scholar
  147. Sideris MG (1987) Spectral methods for the numerical solution of Molodensky’s problem. UCSE Reports, No. 20024, Department of Surveying Engineering, The University of CalgaryGoogle Scholar
  148. Sideris MG (1994) Regional geoid determination. In: Vanicek P, Christou NT (eds) Geoid and its geophysical interpretations. CRC Press, Inc, Boca Raton, FL, USA, pp 77–94Google Scholar
  149. Sideris MG (2011a) Geoid determination, theory and principles. In: Gupta HK (ed) Encyclopedia of Solid Earth Geophysics. Springer-Verlag, Berlin, Heidelberg, pp 356–362Google Scholar
  150. Sideris MG (2011b) Geoid, computational method. In: Gupta HK (ed) Encyclopedia of Solid Earth Geophysics. Springer-Verlag, Berlin, Heidelberg, pp 366–371Google Scholar
  151. Sigl R (1985) Introduction to potential theory. Abacus Press in association with H. Wichmann VerlagGoogle Scholar
  152. Sjöberg L (1980) Least squares combination of satellite harmonics and integral formulas in physical geodesy. Gerlands Beitr. d. Geophysik 89:371–377Google Scholar
  153. Sjöberg L (1981) Least squares spectral combination of satellite and terrestrial data in physical geodesy. Annales de Géophysique 37:25–30Google Scholar
  154. Sjöberg LE (2003) A general model for modifying Stokes’ formula and its least-squares solution. J Geod 77:459–464CrossRefGoogle Scholar
  155. Sjöberg LE (2010) A strict formula for geoid-to-quasigeoid separation. J Geod 84:699–702CrossRefGoogle Scholar
  156. Sjöberg LE, Nahavandchi H (2000) The atmospheric geoid effects in Stokes’ formula. Geophys J Int 140:95–100CrossRefGoogle Scholar
  157. Smith DA, Roman DR (2001) GEOID99 and G99SSS: 1-arc-minute geoid models for the United States. J Geod 75:469–490CrossRefGoogle Scholar
  158. Smith D, Véronneau M, Roman D, Huang JL, Wang YM, Sideris M (2010) Towards the unification of the vertical datums over the North American continent. IAG Commission 1 symposium 2010, reference frames for applications in geosciences (REFAG2010), Marne-La-Vallée, France, 4–8 Oct 2010Google Scholar
  159. Steinberg G, Papo H (1998) Ellipsoidal heights: the future of vertical geodetic control. GPS World 9(2):41–43Google Scholar
  160. Strange WE (1982) An evaluation of orthometric height accuracy using bore hole gravimetry. Bull Géod 56:300–311CrossRefGoogle Scholar
  161. Sünkel H (1983) The geoid in Austria. In: Proceedings IAG symposia, IUGG XVIII General Assembly, Hamburg, FRG, 1983, vol 1. Report Department of Geodetic Science and Surveying, The Ohio State University, Columbus, Ohio, USA, pp 348–364Google Scholar
  162. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins M (2004a) GRACE measurements of mass variability in the earth system. Science, vol 305, issue 5683, pp 503–505, 23 July 2004Google Scholar
  163. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004b) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9):L09607. doi: 10.1029/2004GL019920 CrossRefGoogle Scholar
  164. Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Poole S (2007) The GGM03 mean earth gravity model from GRACE. Eos Trans. AGU, vol 88(52), Fall Meeting Supplement, Abstract G42A-03Google Scholar
  165. Tenzer R, Vaníček P, Santos M, Featherstone WE, Kuhn M (2005) The rigorous determination of orthometric heights. J Geod 79:82–92CrossRefGoogle Scholar
  166. Timmen L (2010) Absolute and relative gravimetry. In: Xu G (ed) Sciences of geodesy—I, advances and future directions. Springer-Verlag, Berlin, pp 1–48Google Scholar
  167. Torge W (1977) Untersuchungen zur Höhen- und Geoidbestimmung im dreidimensionalen Testnetz Westharz. Zeitschrift f. Verm.wesen (zfv) 102:173–186Google Scholar
  168. Torge W (1982) Zur Geoidbestimmung im Meeresbereich. In: Geodaesia Universalis—Festschrift Karl Rinner zum 70. Geburtstag, Mitt. Geod. Inst. T.U. Graz, Folge 40, pp 346–355Google Scholar
  169. Torge W (1989) Gravimetry. W. de Gruyter, BerlinGoogle Scholar
  170. Torge W (2001) Geodesy, 3rd edn. W. de Gruyter, BerlinCrossRefGoogle Scholar
  171. Torge W, Denker H (1998) The European geoid—development over more than 100 years and present status. In: Vermeer M, Ádám J (eds) Second continental workshop on the geoid in Europe, Proceedings Rep. Finnish Geod. Inst., vol 98, issue 4, Masala, pp 47–52Google Scholar
  172. Torge W, Röder RH, Schnüll M, Wenzel H-G, Faller JE (1987) First results with the transportable absolute gravity meter JILAG-3. Bull Géod 61:161–176CrossRefGoogle Scholar
  173. Torge W, Weber G, Wenzel H-G (1982) Computation of a high resolution European geoid (EGG1). In: Proceedings of 2nd international symposium on the geoid in Europe and Mediterranian area, Rome. Istituto Geografico Militare, Italy, Florence, pp 437–460Google Scholar
  174. Tscherning CC (1976a) Computation of second-order derivatives of the normal potential based on the representation by a Legendre series. Manuscripta Geod 1:71–92Google Scholar
  175. Tscherning CC (1976b) On the chain-rule method for computing potential derivatives. Manuscripta Geod 1:125–141Google Scholar
  176. Tscherning CC (1985) Local approximation of the gravity potential by least squares collocation. In: Schwarz KP (ed) Proceedings of international summer school on local gravity field approximation, Beijing, 21 Aug–4 Sept 1984, The University of Calgary, Publ. 60003, pp 277−361Google Scholar
  177. Tscherning CC (1986) Functional methods for gravity field approximation. In: Sünkel H (ed) Mathematical and numerical techniques in physical geodesy. Lecture notes in earth sciences, vol 7. Springer-Verlag, Berlin, Heidelberg, pp 3–47Google Scholar
  178. Tscherning CC (1994) Geoid determination by least-squares collocation using GRAVSOFT. In: International school for the determination and use of the geoid. Lecture notes, Milan, 10–15 Oct 1994, pp 135–164Google Scholar
  179. Tscherning CC (2004) A discussion of the use of spherical approximation or no approximation in gravity field modeling with emphasis on unsolved problems in least-squares collocation. In: Sansò F (ed) V Hotine-Marussi symposium on mathematical geodesy, IAG symposia, vol 127. Springer-Verlag, Berlin, Heidelberg, pp 184–188Google Scholar
  180. Tscherning CC, Rapp RH (1974) Closed covariance expressions for gravity anomalies, geoid undulations, and deflections of the vertical implied by anomaly degree variance models. Report Department of Geodetic Science, no. 208, The Ohio State University, Columbus, Ohio, USAGoogle Scholar
  181. USGS (2007) Global 30 arc-second elevation data set GTOPO30. U.S. Geological Survey, Center for Earth Resources Observation and Science (EROS). http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html
  182. Vaníček P (1998) The height of reason (a letter to the editor). GPS World 9(4):14Google Scholar
  183. Véronneau M, Duvai R, Huang J (2006) A gravimetric geoid model as a vertical datum in Canada. Geomatica 60:165–172Google Scholar
  184. Véronneau M, Huang J (2007) The Canadian gravimetric geoid model 2005 (CGG2005). Report, Geodetic Survey Division, Earth Sciences Sector, Natural Resources Canada, Ottawa, CanadaGoogle Scholar
  185. Wahr JM (2009) Time variable gravity from satellites. In: Herring T (vol ed) Treatise on geophysics, vol 3, geodesy. Elsevier, Amsterdam, pp 213–237Google Scholar
  186. Wang YM, Saleh J, Li X, Roman DR (2011) The US Gravimetric geoid of 2009 (USGG2009): model development and evaluation. J Geod. doi: 10.1007/s00190-011-0506-7 Google Scholar
  187. Weber G (1984) Hochauflösende Freiluftanomalien und gravimetrische Lotabweichungen für Europa. Wiss. Arb. d. Fachr. Verm.wesen d. Univ. Hannover, Nr. 135, HannoverGoogle Scholar
  188. Wenzel HG (1981) Zur Geoidbestimmung durch Kombination von Schwereanomalien und einem Kugelfunktionsmodell mit Hilfe von Integralformeln. Zeitschrift f. Verm.wesen (zfv) 106:102–111Google Scholar
  189. Wenzel HG (1982) Geoid computation by least squares spectral combination using integral formulas. In: Proceedings of general meeting of the IAG, Tokyo, 7–15 May 1982, pp 438–453Google Scholar
  190. Wenzel H-G (1985) Hochauflösende Kugelfunktionsmodelle für das Gravitationspotential der Erde. Wiss. Arb. d. Fachr. Verm.wesen d. Univ. Hannover, Nr. 137, HannoverGoogle Scholar
  191. Wenzel H-G (1989) On the definition and numerical computation of free air gravity anomalies. Bull. d’Information 64. Bureau Gravimetrique Internationale, Toulouse, France, pp 23−40Google Scholar
  192. Wichiencharoen C (1982) The indirect effects on the computation of geoid undulations. Report Department of Geodetic Science, no. 336, The Ohio State University, Columbus, Ohio, USAGoogle Scholar
  193. Wildermann E (1988) Untersuchungen zur lokalen Schwerefeldbestimmung aus heterogenen Daten dargestellt am Beispiel der Geotraverse venezolanische Anden. Wiss. Arb. d. Fachr. Verm.wesen d. Univ. Hannover, Nr. 155, HannoverGoogle Scholar
  194. Wolf H (1974) Über die Einführung von Normalhöhen. Zeitschrift f. Verm.wesen (zfv) 99:1–5Google Scholar
  195. Wolf KI (2007) Kombination globaler Potentialmodelle mit terrestrischen Schweredaten für die Berechnung der zweiten Ableitungen des Gravitationspotentials in Satellitenbahnhöhe. Wiss. Arb. d. Fachr. Geodäsie u. Geoinformatik d. Leibniz Univ. Hannover, Nr. 264, HannoverGoogle Scholar
  196. Wolf KI (2008) Evaluation regionaler Quasigeoidlösungen in synthetischer Umgebung. Zeitschrift f. Verm.wesen (zfv) 133:52–63Google Scholar
  197. Wunsch C, Gaposchkin EM (1980) On using satellite altimetry to determine the general circulation of the oceans with application to geoid improvement. Rev Geophys 18:725–745CrossRefGoogle Scholar
  198. Zeman A (1987) Definition of the normal gravity field including the constant part of tides. Stud Geophys Geod 31:113–120CrossRefGoogle Scholar
  199. Ziebart MK, Iliffe JC, Forsberg R, Strykowski G (2008) Convergence of the UK OSGM05 GRACE-based geoid and the UK fundamental benchmark network. J Geophys Res B 113:B12401. doi: 10.1029/2007JB004959 CrossRefGoogle Scholar
  200. Zilkoski DB, Richards JH, Young GM (1995) A summary of the results of the general adjustment of the North American vertical datum of 1988. Allg Verm Nachr 102:310–321Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut für Erdmessung (IfE)Leibniz Universität Hannover (LUH)HannoverGermany

Personalised recommendations