“Click”-Cyclized 68Ga-Labeled Peptides for Molecular Imaging and Therapy: Synthesis and Preliminary In Vitro and In Vivo Evaluation in a Melanoma Model System

  • Molly E. Martin
  • M. Sue O’Dorisio
  • Whitney M. Leverich
  • Kyle C. Kloepping
  • Susan A. Walsh
  • Michael K. Schultz
Conference paper
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 194)


Cyclization techniques are used often to impart higher in vivo stability and binding affinity to peptide targeting vectors for molecular imaging and therapy. The two most often used techniques to impart these qualities are lactam bridge construction and disulfide bond formation. While these techniques have been demonstrated to be effective, orthogonal protection/deprotection steps can limit achievable product yields. In the work described in this chapter, new α-melanocyte stimulating hormone (α-MSH) peptide analogs were synthesized and cyclized by copper-catalyzed terminal azide-alkyne cycloaddition “click” chemistry techniques. The α-MSH peptide and its cognate receptor (melanocortin receptor subtype 1, MC1R) represent a well-characterized model system to examine the effect of the triazole linkage for peptide cyclization on receptor binding in vitro and in vivo. Four new DOTA-conjugated α-MSH analogs were cyclized and evaluated by in vitro competitive binding assays, serum stability testing, and in vivo imaging by positron emission tomography (PET) of tumor-bearing mice. These new DOTA-conjugated click-cyclized analogs exhibited selective high binding affinity (<2 nM) for MC1R on melanoma cells in vitro, high stability in human serum, and produced high-contrast PET/CT images of tumor xenografts. 68Ga-labeled DOTA bioconjugates displayed rapid pharmacokinetics with receptor-mediated tumor accumulation of up to 16 ± 5% ID/g. The results indicate that the triazole ring is an effective bioisosteric replacement for the standard lactam bridge assemblage for peptide cyclization. Radiolabeling results confirm that Cu catalyst is sufficiently removed prior to DOTA chelator addition to enable insertion of radio metals or stable metals for molecular imaging and therapy. Thus, these click-chemistry-cyclized variants show promise as agents for melanocortin receptor-targeted imaging and radionuclide therapy.


Murine Melanoma Cell Competitive Binding Assay Semipreparative HPLC Serum Protease Rink Amide Resin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Support for this work was provided by the American Cancer Society (IRG-77004-31; M.K.S.), the Holden Comprehensive Cancer Center (M.E.M., M.K.S.), Neuroendocrine Tumor Fund (M.S.O.), and University of Iowa Dance Marathon (M.E.M.). M.E.M. is supported by T32 University of Iowa Institutional Training Grant in Hematologic and Oncologic Childhood Diseases (HL080070). The authors thank Dr. Kevin Rice, Dr. Lynn Teesch, and Vic Parcell for spirited assistance with mass spectral analyses.


  1. Al-Obeidi F, Castrucci AMDL, Hadley ME, Hruby VJ (1989a) Potent and prolonged-acting cyclic lactam analogs of α-melanotropin: design based on molecular dynamics. J Med Chem 32(12):2555–2561. doi: 10.1021/jm00132a010 PubMedCrossRefGoogle Scholar
  2. Al-Obeidi F, Hadley ME, Pettitt BM, Hruby VJ (1989b) Design of a new class of superpotent cyclic α-melanotropins based on quenched dynamic simulations. J Am Chem Soc 111(9):3413–3416. doi: 10.1021/ja00191a044 CrossRefGoogle Scholar
  3. Anderson CJ, Wadas TJ, Wong EH, Weisman GR (2008) Cross-bridged macrocyclic chelators for stable complexation of copper radionuclides for PET imaging. Q J Nucl Med Mol Imag 52(2):185–192. doi: R39072063 Google Scholar
  4. Bednarek MA, MacNeil T, Kalyani RN, Tang R, Van der Ploeg LHT, Weinberg DH (1999a) Analogs of MTII, lactam derivatives of α-melanotropin, modified at the N-terminus and their selectivity at human melanocortin receptors 3, 4, and 5. Biochem Biophys Res Commun 261(1):209–213PubMedCrossRefGoogle Scholar
  5. Bednarek MA, MacNeil T, Kalyani RN, Tang R, Van der Ploeg LHT, Weinberg DH (2000) Analogs of lactam derivatives of α-melanotropin with basic and acidic residues. Biochem Biophys Res Commun 272(1):23–28PubMedCrossRefGoogle Scholar
  6. Bednarek MA, MacNeil T, Tang R, Fong TM, Angeles Cabello M, Maroto M, Teran A (2007a) Potent and selective peptide agonists of α-melanocyte stimulating hormone (αMSH) action at human melanocortin receptor 5; their synthesis and biological evaluation in vitro. Chem Biol Drug Des 69(5):350–355. doi: 10.1111/j.1747-0285.2007.00513.x PubMedCrossRefGoogle Scholar
  7. Bednarek MA, MacNeil T, Tang R, Fong TM, Cabello MA, Maroto M, Teran A (2007b) Potent and selective agonists of human melanocortin receptor 5: cyclic analogues of α-melanocyte-stimulating hormone. J Med Chem 50(10):2520–2526. doi: 10.1021/jm0614275 PubMedCrossRefGoogle Scholar
  8. Bednarek MA, Silva MV, Arison B, MacNeil T, Kalyani RN, Huang RR, Weinberg DH (1999b) Structure-function studies on the cyclic peptide MT-II, lactam derivative of alpha-melanotropin. Peptides 20(3):401–409. doi: 10.1016/S0196-9781(99)00048-0 PubMedCrossRefGoogle Scholar
  9. Bloomberg GB, Askin D, Gargaro AR, Tanner MJA (1993) Synthesis of a branched cyclic peptide using a strategy employing Fmoc chemistry and two additional orthogonal protecting groups. Tetrahedron Lett 34(29):4709–4712CrossRefGoogle Scholar
  10. Bock VD, Speijer D, Hiemstra H, van Maarseveen JH (2007) 1,2,3-Triazoles as peptide bond isosteres: synthesis and biological evaluation of cyclotetrapeptide mimics. Org Biomol Chem 5(6):971–975PubMedCrossRefGoogle Scholar
  11. Boswell CA, Regino CA, Baidoo KE, Wong KJ, Bumb A, Xu H, Milenic DE, Kelley JA, Lai CC, Brechbiel MW (2008) Synthesis of a cross-bridged cyclam derivative for peptide conjugation and 64Cu radiolabeling. Bioconjugate Chem 19(7):1476–1484. doi: 10.1021/bc800039e CrossRefGoogle Scholar
  12. Brechbiel MW (2008) Bifunctional chelates for metal nuclides. Q J Nucl Med Mol Imag 52(2):166–173 Google Scholar
  13. Brik A, Alexandratos J, Lin Y-C, Elder JH, Olson AJ, Wlodawer A, Goodsell DS, Wong C-H (2005) 1,2,3-Triazole as a peptide surrogate in the rapid synthesis of HIV-1 protease inhibitors. Chem BioChem 6(7):1167–1169. doi: 10.1002/cbic.200500101 Google Scholar
  14. Cai M, Cai C, Mayorov AV, Xiong C, Cabello CM, Soloshonok VA, Swift JR, Trivedi D, Hruby VJ (2004) Biological and conformational study of β-substituted prolines in MT-II template: steric effects leading to human MC5 receptor selectivity*. J Pept Res 63(2):116–131. doi: 10.1111/j.1399-3011.2003.00105.x PubMedCrossRefGoogle Scholar
  15. Cantorias MV, Figueroa SD, Quinn TP, Lever JR, Hoffman TJ, Watkinson LD, Carmack TL, Cutler CS (2009) Development of high-specific-activity 68Ga-labeled DOTA-rhenium-cyclized α-MSH peptide analog to target MC1 receptors overexpressed by melanoma tumors. Nucl Med Biol 36(5):505–513PubMedCrossRefGoogle Scholar
  16. Cone RD (ed) (2000) The melanocortin receptors. Humana, TotowaGoogle Scholar
  17. Cowell SM, Balse-Srinivasan PM, Ahn JM, Hruby VJ (2002) Design and synthesis of peptide antagonists and inverse agonists for G protein-coupled receptors. Methods Enzymol 343:49–72PubMedCrossRefGoogle Scholar
  18. Dessolin M, Guillerez M-G, Thieriet N, Guibé F, Loffet A (1995) New allyl group acceptors for palladium catalyzed removal of allylic protections and transacylation of allyl carbamates. Tetrahedron Lett 36(32):5741–5744Google Scholar
  19. Eberle AN, Froidevaux S (2003) Radiolabeled α-melanocyte-stimulating hormone analogs for receptor-mediated targeting of melanoma: from tritium to indium. J Mol Recognit 16(5):248–254. doi: 10.1002/jmr.633 PubMedCrossRefGoogle Scholar
  20. Eberle AN, Verin VJ, Solca F, Siegrist W, Kuenlin C, Bagutti C, Stutz S, Girard J (1991) Biologically active monoiodinated α-MSH derivatives for receptor binding studies using human melanoma cells. J Recept Res 11(1–4):311–322PubMedGoogle Scholar
  21. Fani M, Mueller A, Tamma M-L, Nicolas G, Rink HR, Cescato R, Reubi JC, Maecke HR (2010) Radiolabeled bicyclic somatostatin-based analogs: a novel class of potential radiotracers for SPECT/PET of neuroendocrine tumors. J Nucl Med 51(11):1771–1779. doi: 10.2967/jnumed.110.076695 Google Scholar
  22. Fragogeorgi EA, Zikos C, Gourni E, Bouziotis P, Paravatou-Petsotas M, Loudos G, Mitsokapas N, Xanthopoulos S, Mavri-Vavayanni M, Livaniou E, Varvarigou AD, Archimandritis SC (2009) Spacer site modifications for the improvement of the in vitro and in vivo binding properties of 99 mTc-N3S-X-Bombesin[2–14] derivatives. Bioconjugate Chem 20:856–867CrossRefGoogle Scholar
  23. Froidevaux S, Calame-Christe M, Schuhmacher J, Tanner H, Saffrich R, Henze M, Eberle AN (2004) A gallium-labeled DOTA-α-melanocyte- stimulating hormone analog for PET imaging of melanoma metastases. J Nucl Med 45(1):116–123PubMedGoogle Scholar
  24. Garrison JC, Rold TL, Sieckman GL, Naz F, Sublett SV, Figueroa AD, Volkert WA, Hoffman TJ (2008) Evaluation of the pharmacokinetic effects of various linking groups using the 111In-DOTA-X-BBN(7–14)NH2 structural paradigm in prostate cancer model. Bioconjugate Chem 19:1803–1812CrossRefGoogle Scholar
  25. Ghanem GE, Comunale G, Libert A, Vercammen-Grandjean A, Lejeune FJ (1988) Evidence for alpha-melanocyte-stimulating hormone (α-MSH) receptors on human malignant melanoma cells. Int J Cancer 41(2):248–255. doi: 10.1002/ijc.2910410216 PubMedCrossRefGoogle Scholar
  26. Grieco P, Cai M, Liu L, Mayorov A, Chandler K, Trivedi D, Lin G, Campiglia P, Novellino E, Hruby VJ (2008) Design and microwave-assisted synthesis of novel macrocyclic peptides active at melanocortin receptors: discovery of potent and selective hMC5R receptor antagonists. J Med Chem 51(9):2701–2707. doi: 10.1021/jm701181n PubMedCrossRefGoogle Scholar
  27. Guo H, Yang J, Gallazzi F, Prosnitz ER, Sklar LA, Miao Y (2009) Effect of DOTA position on melanoma targeting and pharmacokinetic properties of 111In-labeled lactam bridge-cyclized α-MSH peptide. Bioconjugate Chem 20:2162–2168CrossRefGoogle Scholar
  28. Guo H, Yang J, Gallazzi F, Miao Y (2010) Reduction of the ring size of radiolabeled lactam bridge-cyclized α-MSH peptide, resulting in enhanced melanoma uptake. J Nucl Med 51(3):418–426. doi: 10.2967/jnumed.109.071787 PubMedCrossRefGoogle Scholar
  29. Guo H, Yang J, Gallazzi F, Miao Y (2011) Effects of the amino acid linkers on the melanoma-targeting and pharmacokinetic properties of 111In-labeled lactam bridge-cyclized α-MSH peptide. J Nucl Med 52:608–616. doi: 10.2967/jnumed.110.086009 PubMedCrossRefGoogle Scholar
  30. Harris JI, Lerner AB (1957) Amino-acid sequence of the [alpha]-melanocyte-stimulating hormone. Nature 179(4574):1346–1347PubMedCrossRefGoogle Scholar
  31. Hausner SH, Kukis DL, Gagnon MK, Stanecki CE, Ferdani R, Marshall JF, Anderson CJ, Sutcliffe JL (2009) Evaluation of [64Cu]Cu-DOTA and [64Cu]Cu-CB-TE2A chelates for targeted positron emission tomography with an alphavbeta6-specific peptide. Mol Imaging 8(2):111–121PubMedGoogle Scholar
  32. Heppeler A, Froidevaux S, Eberle AN, Maecke HR (2000) Receptor targeting for tumor localisation and therapy with radiopeptides. Curr Med Chem 7:971–994PubMedGoogle Scholar
  33. Hruby VJ, Cai M, Grieco P, Han G, Kavarana M, Trivedi DEV (2003) Exploring the stereostructural requirements of peptide ligands for the melanocortin receptors. Ann N Y Acad Sci 994(1):12–20. doi: 10.1111/j.1749-6632.2003.tb03157.x PubMedCrossRefGoogle Scholar
  34. Hruby VJ, Wilkes BC, Hadley ME, Al-Obeidi F, Sawyer TK, Staples DJ, DeVaux AE, Dym O, Castrucci AMdL (1987) α-Melanotropin: the minimal active sequence in the frog skin bioassay. J Med Chem 30(11):2126–2130. doi: 10.1021/jm00394a033 PubMedCrossRefGoogle Scholar
  35. Huisgen R (1963) 1,3-Dipolar cycloadditions. Past and future. Angew Chem Int Ed 2(10):565–598. doi: 10.1002/anie.196305651 (in English)CrossRefGoogle Scholar
  36. Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem 34(2):595–598PubMedCrossRefGoogle Scholar
  37. Lunec J, Pieron C, Thody AJ (1992) MSH receptor expression and the relationship to melanogenesis and metastatic activity in B16 melanoma. Melanoma Res May 2(1):5–12CrossRefGoogle Scholar
  38. Mayorov AV, Cai M, Chandler KB, Petrov RR, Van Scoy AR, Yu Z, Tanaka DK, Trivedi D, Hruby VJ (2006a) Development of cyclic γ-MSH analogues with selective hMC3R agonist and hMC3R/hMC5R antagonist activities. J Med Chem 49(6):1946–1952. doi: 10.1021/jm0510326 PubMedCrossRefGoogle Scholar
  39. Mayorov AV, Han S-Y, Cai M, Hammer MR, Trivedi D, Hruby VJ (2006b) Effects of macrocycle size and rigidity on melanocortin receptor-1 and -5 selectivity in cyclic lactam α-melanocyte-stimulating hormone analogs. Chem Biol Drug Des 67(5):329–335. doi: 10.1111/j.1747-0285.2006.00383.x PubMedCrossRefGoogle Scholar
  40. Miao Y, Gallazzi F, Guo H, Quinn TP (2008) 111In-labeled lactam bridge-cyclized α-melanocyte stimulating hormone peptide analogues for melanoma imaging. Bioconjugate Chem 19(2):539–547. doi: 10.1021/bc700317w CrossRefGoogle Scholar
  41. Nestor JJ Jr (2009) The medicinal chemistry of peptides. Curr Med Chem 16:4399–4418PubMedCrossRefGoogle Scholar
  42. Okarvi SM (2004) Synthesis, radiolabeling and in vitro and in vivo characterization of a technetium-99 m-labeled alpha-M2 peptide as a tumor imaging agent. J Pept Res 63(6):460–468. doi: 10.1111/j.1399-3011.2004.00160.x PubMedCrossRefGoogle Scholar
  43. Raposinho PD, Correia JDG, Oliveira MC, Santos I (2010) Melanocortin-1 receptor-targeting with radiolabeled cyclic α-melanocyte-stimulating hormone analogs for melanoma imaging. Pept Sci 94(6):820–829. doi: 10.1002/bip.21490 CrossRefGoogle Scholar
  44. Rockey WM, Huang L, Kloepping KC, Baumhover NJ, Giangrande PH, Schultz MK (2011) Synthesis and radiolabeling of chelator-RNA aptamer bioconjugates with copper-64 for targeted molecular imaging. Bioorg Med Chem 19(13):4080–4090 (July 1)PubMedCrossRefGoogle Scholar
  45. Sahm UG, Olivier GWJ, Branch SK, Moss SH, Pouton CW (1994) Synthesis and biological evaluation of [alpha]-MSH analogues substituted with alanine. Peptides 15(7):1297–1302PubMedCrossRefGoogle Scholar
  46. Sawyer TK, Sanfilippo PJ, Hruby VJ, Engel MH, Heward CB, Burnett JB, Hadley ME (1980) 4-Norleucine, 7-d-phenylalanine-alpha-melanocyte-stimulating hormone: a highly potent alpha-melanotropin with ultra long biological activity. Proc Natl Acad Sci U S A 77(10):5754–5758PubMedCrossRefGoogle Scholar
  47. Siegrist W, Oestreicher M, Stutz S, Girard J, Eberle AN (1988) Radioreceptor assay for α-MSH using mouse B16 melanoma cells. J Recept Res 8(1–4):323–343PubMedGoogle Scholar
  48. Sugg EE, De L, Castrucci AM, Hadley ME, Van Binst G, Hruby VJ (1988) Cyclic lactam analogs of Ac-[Nle4].alpha.-MSH4-11-NH2. Biochemistry 27(21):8181–8188. doi: 10.1021/bi00421a029 Google Scholar
  49. Tatro JB, Entwistle ML, Lester BR, Reichlin S (1990) Melanotropin receptors of murine melanoma characterized in cultured cells and demonstrated in experimental tumors in situ. Cancer Res 50(4):1237–1242PubMedGoogle Scholar
  50. Thieriet N, Alsina J, Giralt E, Guibé F, Albericio F (1997) Use of alloc-amino acids in solid-phase peptide synthesis. Tandem deprotection-coupling reactions using neutral conditions. Tetrahedron Lett 38(41):7275–7278CrossRefGoogle Scholar
  51. Turner RA, Oliver AG, Lokey RS (2007) Click chemistry as a macrocyclization tool in the solid-phase synthesis of small cyclic peptides. Org Lett 9(24):5011–5014. doi: 10.1021/ol702228u PubMedCrossRefGoogle Scholar
  52. Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M (2010) Synthetic therapeutic peptides: science and market. Drug Discovery Today 15(1–2):40–56PubMedCrossRefGoogle Scholar
  53. Ying J, Gu X, Cai M, Dedek M, Vagner J, Trivedi DB, Hruby VJ (2006) Design, synthesis, and biological evaluation of new cyclic melanotropin peptide analogues selective for the human melanocortin-4 receptor. J Med Chem 49(23):6888–6896. doi: 10.1021/jm060768f PubMedCrossRefGoogle Scholar
  54. Zwanziger D, Beck-Sickinger AG (2008) Radiometal targeted tumor diagnosis and therapy with peptide hormones. Curr Pharm Des 14:2385–2400PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Molly E. Martin
    • 1
  • M. Sue O’Dorisio
    • 1
  • Whitney M. Leverich
    • 1
  • Kyle C. Kloepping
    • 2
  • Susan A. Walsh
    • 2
  • Michael K. Schultz
    • 2
  1. 1.Department of Pediatric Hematology/OncologyCarver College of Medicine, The University of IowaIowa CityUSA
  2. 2.Departments of Radiology and Radiation Oncology (Free Radical Radiation Biology Program)Carver College of Medicine, The University of IowaIowa CityUSA

Personalised recommendations