Advertisement

Nanoparticles and Phage Display Selected Peptides for Imaging and Therapy of Cancer

  • Cathy S. Cutler
  • Nripen Chanda
  • Ravi Shukla
  • Nebiat Sisay
  • Melchor Cantorias
  • Ajit Zambre
  • Mark McLaughlin
  • James Kelsey
  • Anandhi Upenandran
  • Dave Robertson
  • Susan Deutscher
  • Raghuraman Kannan
  • Kattesh Katti
Conference paper
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 194)

Abstract

Molecular imaging probes are a special class of pharmaceuticals that target specific biochemical signatures associated with disease and allow for noninvasive imaging on the molecular level. Because changes in biochemistry occur before diseases reach an advanced stage, molecular imaging probes make it possible to locate and stage disease, track the effectiveness of drugs, treat disease, monitor response, and select patients to allow for more personalized diagnosis and treatment of disease. Targeting agents radiolabeled with positron emitters are of interest due to their ability to quantitatively measure biodistribution and receptor expression to allow for optimal dose determinations. 68Ga is a positron emitter, which allows for quantitative imaging through positron emission chromatography (PET). The availability of 68Ga from a generator and its ability to form stable complexes with a variety of chelates hold promise for expanding PET utilization to facilities unable to afford their own cyclotron. Nanoparticles conjugated with various proteins and peptides derived from phage display that can be selectively targeted are being developed and evaluated for guided imaging and therapy. Herein we highlight some initial efforts in combining the enhanced selectivity of nanoparticles and peptides with 68Ga for use as molecular imaging probes.

Keywords

Prostate Cancer Gold Nanoparticles SCID Mouse Human Prostate Cancer Thioctic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Asti M, Farioli D, Murray L, Guidotti C, Cutler CS, Mayer P, Salvo D (2010) Influence of cations on the coordination reaction of DOTATATE with yttrium and lutetium technetium and other metals in chemistry and medicine. In: Mazzi U, Eckelmann WC, Volkert WA (eds) SGEditoriali. Padova, Italy, pp 249–250Google Scholar
  2. Cantorias M, Figueroa SD, Quinn TP, Lever JR, Hoffman TJ, Watkinson LD, Carmack TL, Cutler CS (2009) Development of a high specific activity 68Ga-labeled DOTA-Rhenium-cyclized α-MSH peptide peptide analog to target MC1 receptors overexpressed by melanoma tumors. Nucl Med Biol 36(5):505–513Google Scholar
  3. Chanda N, Kattumuri K, Shukla R, Zambre A, Katti K, Upendran A, Kulkarni RR, Kan P, Fent GM, Casteel SW, Smith CJ, Boote E, Robertson JD, Cutler CS, Lever JR, Katti KV, Kannan R (2010) Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity. PNAS 107(19):8760–8765PubMedCrossRefGoogle Scholar
  4. Chandra N, Kan P, Watkinson LD, Carmack TL, Shukla R, Engelbrecht H, Lever JR, Katti K, Fent GM, Casteel SW, Zambre A, Smith CJ, Miller WH, Jurisson SS, Boote E, Robertson DR, Cutler CS, Dobrovolskaia M, Kannan R, Katti KV (2010) Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of GA-198AuNP nano construct in prostate tumor–bearing mice. Nanomed: NMB 6(2):201–209CrossRefGoogle Scholar
  5. Debuttiere P-J, Roux S, Vocanson F, Billotey C, Beuf O, Favre-Réguillon A, Lin Y, Pellet-Rostaing S, Lamartine R, Perriat P, Tillement O (2006) Design of gold nanoparticles for magnetic resonance imaging. Adv Funct Mater 16(18):2330–2339CrossRefGoogle Scholar
  6. Deutscher SL (2010) Phage display in molecular imaging and diagnosis of cancer. Chem Rev 110:3196–3211. doi: 10.1021/cr900317f PubMedCrossRefGoogle Scholar
  7. Goldenberg DM (2003) Targeted therapy of cancer with radiolabeled antibodies. J Nucl Med 43(5):309, 693–713Google Scholar
  8. Kannan R, Rahing V, Cutler C, Pandrapragada R, Katti KK, Kattumuri V, Robertson JD, Casteel SJ, Jurisson S, Smith C, Boote E, Katti KV (2006) Nano compatible chemistry toward fabrication of target-specific gold nanoparticles. J Am Chem Soc (Communication) 128(35):11342–11343. doi: 10.1021/ja63280c CrossRefGoogle Scholar
  9. Klatersky J (2006) Adverse effects of the humanized antibodies used as cancer therapeutics. J Curr Opin Oncol 18:316CrossRefGoogle Scholar
  10. Kumar SR, Deutsher SL (2008) 111In-labeled galectin-3 targeting peptide as a SPECT agent for imaging breast tumors. J Nucl Med 49:796–803Google Scholar
  11. Malinoff HL, Wicha MS (1983) Isolation of a cell surface receptor protein for laminin from murine fibrosarcoma cells (trans from eng). J Cell Biol 96(5):1475–1479 (in eng)PubMedCrossRefGoogle Scholar
  12. McLaughlin M, Chanda N, Lever JR, Smith CJ, Kannan R, Katti K, Katti K, Cutler CS (2011a) Evaluation of receptor affinity of Au-198-starch-nanoparticles conjugated to bombesin. J Labelled Compd Radiopharm 54:S549Google Scholar
  13. McLaughlin M, Woodward J, Broderick M, Standaert R, Rondinone A, Robertson DR, Mirzadeh S, Kennel SJ (2011b) Synthesis and characterization of a novel gold coated LaGdPO4 nanoparticles containing actinium-225. In: 7th symposium on targeted alpha therapy. Berlin, Germany, 17–19 July 2011Google Scholar
  14. Newton-Northrup JR, Figueroa SD, Quinn TP, Deutscher SL (2009) Bifunctional-phage based pre targeted imaging of human prostate cancer. Nucl Med Biol 36:789–800Google Scholar
  15. Prasanphanich A et al (2007) [64Cu-NOTA-8-Aoc-BBN-(7–14)NH2] targeting vector for positron-emission tomography imaging of gastrin-releasing peptide receptor-expressing tissues. PNAS 104:12462–12467PubMedCrossRefGoogle Scholar
  16. Rao NC, Barsky SH, Terranova VP, Liotta LA (1983) Isolation of a tumor cell laminin receptor (translated from eng). Biochem Biophys Res Commun 111(3):804–808 (in eng)PubMedCrossRefGoogle Scholar
  17. Shukla R, Zambre A, Nripen C, Kan P, Engelbrecht H, Cutler CS, Lever JR, Smith CJ, Caldwell CW, Katti K, Upendran A, Kannan R, Katti KV (2011a) Clinical translation of radioactive gold nano particle-based nano ceutical (EGCG-198AuNP) for prostate tumor therapy. J Labelled Compd Radiopharm 54:S89Google Scholar
  18. Shukla R, Chanda N, Zambre A, Katti K, Upendran A, Kulkarni RR, Nune S, Casteel SW, Smith CJ, Boote E, Robertson JD, Lever JR, Cutler CS, Caldwell C, Kannan R, Katti KV (2011b) Green nanotechnology approach generates biocompatible gold nanoparticles: inherently therapeutic radioactive 198AuNP-EGCg shows efficacy in treating prostate cancer via Laminin 67 receptor mediated endocytosis. PNAS submittedGoogle Scholar
  19. Smith GP (1985) Flamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315PubMedCrossRefGoogle Scholar
  20. Smith CJ, Volkert WA, Hoffman TJ (2003) Gastrin releasing peptide (GRP) receptor targeted radiopharmaceuticals: a concise update. Nucl Med Biol 30:861–868PubMedCrossRefGoogle Scholar
  21. Tachibana H, Koga K, Fujimura Y, Yamada K (2004) A receptor for green tea polyphenol EGCG (translated from eng). Nat Struct Mol Biol 11(4):380–381 (in eng)PubMedCrossRefGoogle Scholar
  22. Zou J, Glinsky VV, Landon LA, Matthews L, Deutscher SL (2005) Peptides specific to the galatin-3carbohydrate recognition domain inhibit metastasis-associated cancer cell adhesion. Carcinogenesis 26:309–318PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Cathy S. Cutler
    • 1
  • Nripen Chanda
    • 1
  • Ravi Shukla
    • 1
  • Nebiat Sisay
    • 1
  • Melchor Cantorias
    • 1
  • Ajit Zambre
    • 1
  • Mark McLaughlin
    • 1
  • James Kelsey
    • 1
  • Anandhi Upenandran
    • 1
  • Dave Robertson
    • 1
  • Susan Deutscher
    • 1
  • Raghuraman Kannan
    • 1
  • Kattesh Katti
    • 1
  1. 1.Research Reactor CenterUniversity of MissouriColumbiaUSA

Personalised recommendations