PET Lung Ventilation/Perfusion Imaging Using 68Ga Aerosol (Galligas) and 68Ga-Labeled Macroaggregated Albumin

  • S. J. Ament
  • S. Maus
  • H. Reber
  • H. G. Buchholz
  • N. Bausbacher
  • C. Brochhausen
  • F. Graf
  • M. Miederer
  • M. Schreckenberger
Conference paper
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 194)


Pulmonary imaging using ventilation/perfusion (V/P) single-photon emission tomography (V/P scan) with Tc-99m-labeled radiotracers is a well-established diagnostic tool for clinically suspected pulmonary embolism (PE). Ga-68 aerosol (Galligas) and Ga-68-labeled macroaggregated albumin (MAA) are potential tracers for positron emission tomography (PET) lung V/P imaging and could display an advantage over conventional V/P scans in terms of sensitivity and specificity. After radiochemical and animal studies, the clinical applicability of Ga-68 aerosol (Galligas) and Ga-68-labeled MAA was investigated in an exploratory study in patients with clinical suspicion of PE. PET scans were acquired using a 16-slice Gemini TF positron emission tomography/computed tomography (PET/CT) scanner. The acquisition protocol included low-dose computed tomography (CT) for attenuation correction (AC). Dosimetry calculations and continuative phantom measurements were performed. Structural analyses showed no modification of the particles due to the labeling process. In addition, in vitro experiments showed stability of Ga-68 MAA in various media. As expected, Ga-68-labeled human serum albumin microspheres (HSAM) were completely retained in the lung of the animals. In clinical use, PET lung ventilation and perfusion imaging using Ga-68 aerosol (Galligas) and Ga-68-labeled MAA was successful in all cases. In one case a clinically suspected PE could be detected and verified. The administered activity of Ga-68 aerosol (Galligas) and Ga-68-labeled MAA may be reduced by more than 50%, resulting in comparable radiation exposure to conventional V/P scans. In conclusion, Ga-68 aerosol (Galligas) and Ga-68-labeled MAA are efficient substitutes for clinical use and could be an interesting alternative with high accuracy for lung V/P imaging with Tc-99m-labeled radiotracers, especially in times of Mo-99 shortages and increasing use and spread of PET/CT scanners and Ga-68 generators, respectively.


Positron Emission Tomography Pulmonary Embolism Human Serum Albumin Perfusion Imaging Lung Ventilation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Attenuation correction


Computed tomography


Computed tomography angiography


Current good manufacturing practice


Dose–length product


1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (chelate)


Deep vein thrombosis


European Association of Nuclear Medicine


Human serum albumin


Human serum albumin microspheres


Hounsfield unit


International Commission on Radiological Protection


Instant thin-layer chromatography


Macroaggregated albumin


Noise-equivalent count


Ordered-subsets expectation maximization (reconstruction)


Pulmonary embolism


Positron emission tomography


Positron emission tomography/computed tomography


Radionuclide purity


Region of interest


Revolutions per minute


Scanning electron microscopy


Single-photon emission computed tomography


Standardized uptake value


Volumes of interest




  1. Abdul-Fatah SB, Zamburlini M, Halders SG et al (2009) Identification of a shine through artifact in the trachea with I-124 PET/CT. J Nucl Med 50:909–911PubMedCrossRefGoogle Scholar
  2. Bajc M, Neilly JB, Miniati M et al (2009a) EANM guidelines for ventilation/perfusion scintigraphy, part 1-pulmonary imaging with ventilation/perfusion single photon emission tomography. Eur J Nucl Med Mol Imaging 36:1356–1370PubMedCrossRefGoogle Scholar
  3. Bajc M, Neilly JB, Miniati M et al (2009b) EANM guidelines for ventilation/perfusion scintigraphy, part 2-algorithms and clinical considerations for diagnosis of pulmonary emboli with V/PSPECT and MDCT. Eur J Nucl Med Mol Imaging 36:1528–1538PubMedCrossRefGoogle Scholar
  4. Ballinger JR (2010) Mo-99 shortage in nuclear medicine: crisis or challenge? J Labelled Compd Radiopharm 53:167–168Google Scholar
  5. Baum RP, Prasad V, Hommann M et al (2008) Receptor PET/CT imaging of neuroendocrine tumors. Recent Results Cancer Res 170:225–242PubMedCrossRefGoogle Scholar
  6. Borges JB, Velikyan I, Langström B et al (2011) Ventilation distribution studies comparing technegas and “gallgas” using 68GaCl3 as the label. J Nucl Med 52:206–209PubMedCrossRefGoogle Scholar
  7. Breeman WA, de Jong M, de Blois E et al (2005) Radiolabelling DOTA-peptides with 68Ga. Eur J Nucl Med Mol Imaging 32:478–485PubMedCrossRefGoogle Scholar
  8. Chesler DA, Hales C, Hnatowich DJ et al (1975) Three-dimensional reconstruction of lung perfusion image. J Nucl Med 16:80–82PubMedGoogle Scholar
  9. de Blois E, Sze Chan H, Naidoo C et al (2011) Characteristics of SnO2 based Ge-68/Ga-68 generator and aspects of radiolabelling DOTA-peptides. Appl Radiat Isot 69:308–315PubMedCrossRefGoogle Scholar
  10. Even GA, Green MA (1989) Gallium-68-labeled macro aggregated human serum albumin, 68Ga-MAA. Nucl Med Biol 16:319–321Google Scholar
  11. Fani M, Andreé JP, Maecke HR et al (2008) 68Ga-PET: a powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals. Contrast Media Mol Imaging 3:67–77PubMedCrossRefGoogle Scholar
  12. Freeman LM (2007) Don’t bury the V/P Scan: it’s as good as multidetector CT angiograms with a lot less radiation exposure. J Nucl Med 49:5–8PubMedCrossRefGoogle Scholar
  13. Gartenschlaeger M, Maus S, Buchholz H et al (2011) Investigation for extrahepatic shunt before SIRT by PET/CT with 68Ga-. Nuklearmedizin 50(4):N37–N38 (in German)PubMedGoogle Scholar
  14. Gutte H, Mortensen J, Jensen CV et al (2009) Detection of pulmonary embolism with combined ventilation-perfusion SPECT and low-dose-CT: Head-to-head comparison with multidetector CT angiography. J Nucl Med 50:1987–1992PubMedCrossRefGoogle Scholar
  15. Harris WR, Pecoraro VL (1983) Thermodynamic binding constants for gallium transferrin. Biochemistry 22(2):292–299PubMedCrossRefGoogle Scholar
  16. Henriksen G, Scheidhauer K, Schwaiger M et al. (2011) Preparation and assessment of F-18 fluorogas for lung scintigraphy. J Nucl Med 52(1):315P(1493)Google Scholar
  17. Hnatowich DJ (1976) Labeling of tin-soaked albumin microspheres with 68Ga. J Nucl Med 17:57–60PubMedGoogle Scholar
  18. International Commission on Radiological Protection (1998) Radiation dose to patients from radiopharmaceuticals (addendum to ICRP publication 53). Ann ICRP 28(3):1–126 (ICRP Publication 80) Google Scholar
  19. Kemerink GJ, Visser MG, Franssen R et al (2011) Effect of the positron range of 18F, 68Ga, 124I on PET/CT in lung–equivalent materials. Eur J Nucl Med Mol Imaging 38:940–948PubMedCrossRefGoogle Scholar
  20. Knipping HW, Bolt W, Venrath H et al (1955) A new method of heart and lung function testing, the regional functional analysis in the lung and heart clinic by the radioactive noble gas xenon 133 (isotope thoracography). Dtsch Med Wochenschr 80(31–32):1146–1147 (in German)PubMedGoogle Scholar
  21. Kotzerke J, Andreeff M, Wunderlich G (2010a) PET aerosol lung scintigraphy using galligas. Eur J Nucl Mol Imaging 37:175–177CrossRefGoogle Scholar
  22. Kotzerke J, Andreeff M, Wunderlich G et al (2010b) Ventilation/perfusion lung scintigraphy using PET and 68Ga-labeled radiopharmaceuticals. Nuklearmedizin 49:203–208 (in German)PubMedCrossRefGoogle Scholar
  23. Mathias CJ, Green MA (2008) A convenient rote to [68Ga]Ga-MAA for use as a particulate PET perfusion tracer. Appl Radiat Isot 66:1910–1912PubMedCrossRefGoogle Scholar
  24. Maus S, Buchholz HG, Ament S et al (2011) Labelling of commercially available human serum albumin kits with 68Ga as surrogates for 99mTc-MAA microspheres. Appl Radiat Isot 69(1):171–175PubMedCrossRefGoogle Scholar
  25. Maziere B, Loc’h C, Steinling M et al (1986) Stable labeling of serum albumin microspheres with gallium-68. Appl Radiat Isot 37:360–361CrossRefGoogle Scholar
  26. Nozaki T, Muraoka H, Hara T et al (1995) Production of fine aerosols labelled with various radionuclides by sublimation from a graphite boat, and their properties an tracer use. Appl Radiat Isot 46(3):157–165CrossRefGoogle Scholar
  27. Parker MS, Hui FK, Camacho MA, Chung JK, Broga DW, Sethi N (2005) Female breast radiation exposure during CT pulmonary angiography. Am J Roentgenol 185(5):1228–1233CrossRefGoogle Scholar
  28. Pipavath SNJ, Godwin JD (2008) Acute pulmonary thromboembolism: a historical perspective. Am J Roentgenol 191(3):639–641CrossRefGoogle Scholar
  29. Richter T, Bergmann R, Pietzsch J et al (2010) Effects of posture on regional pulmonary blood flow in rats as measured by PET. J Appl Physiol 108(2):422–429PubMedCrossRefGoogle Scholar
  30. Rösch F, Knapp FF (2003) Radionuclide generators. In: Vértes A, Nagy S, Klencsár Z, Rösch F (eds) Handbook of nuclear chemistry, vol 4. Kluwer Academic, The NetherlandsGoogle Scholar
  31. Senden TJ, Moock KH, Gerald JF et al (1997) The physical and chemical nature of technegas. J Nucl Med 38:1327–1333PubMedGoogle Scholar
  32. Sostmann DH, Miniati M, Gottschalk A et al (2008) Sensitivity and specificity of perfusion scintigraphy combined with chest radiography for acute pulmonary embolism in PIOPED II. J Nucl Med 49:1741–1748CrossRefGoogle Scholar
  33. Stein PD, Freeman LM, Sostman HD et al (2009) SPECT in acute pulmonary embolism. J Nucl Med 50(12):1999–2007PubMedCrossRefGoogle Scholar
  34. Strashun AM (2007) A reduced role of V/Q scintigraphy in the diagnosis of acute pulmonary embolism. J Nucl Med 48:1405–1407PubMedCrossRefGoogle Scholar
  35. Surti S, Kuhn A, Werner ME et al (2007) Performance of philips gemini TF PET/CT scanner with special consideration for its time of flight imaging capabilities. J Nucl Med 48:471–480PubMedGoogle Scholar
  36. Technegas® generator user manual (2005) European english version/revision A Last accessed 12 Aug 2011
  37. Wagner HN Jr, Sabiston DC Jr, Ilo M et al (1964) Regional pulmonary blood flow in man by radioisotope scanning. J Am Med Assoc 187:601–603CrossRefGoogle Scholar
  38. Wagner SJ, Welch MJ (1979) Gallium-68 labeling of albumin and albumin microspheres. J Nucl Med 20:428–433PubMedGoogle Scholar
  39. Wunderlich G, Schiller E, Bergmann R et al (2010) Comparison of the stability of Y-90-, Lu-177- and Ga-68-labeled human serum albumin microspheres (DOTA-HSAM). Nucl Med Biol 37(8):861–867PubMedCrossRefGoogle Scholar
  40. Zöpfel K, Bacher-Stier C, Pinkert J et al (2009) Ventilation/perfusion lung scintigraphy: what is still needed? A review considering technetium-99 m-labeled macro-aggregates of albumin. Ann Nucl Med 23(1):1–16CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • S. J. Ament
    • 1
  • S. Maus
    • 1
  • H. Reber
    • 1
  • H. G. Buchholz
    • 1
  • N. Bausbacher
    • 1
  • C. Brochhausen
    • 2
  • F. Graf
    • 1
  • M. Miederer
    • 1
  • M. Schreckenberger
    • 1
  1. 1.Department of Nuclear MedicineUniversity Medical Centre, Johannes Gutenberg-UniversityMainzGermany
  2. 2.Institute of PathologyUniversity Medical Centre, Johannes Gutenberg-UniversityMainzGermany

Personalised recommendations