Skip to main content

Hypoxia Imaging Agents Labeled with Positron Emitters

  • Conference paper
  • First Online:
Book cover Theranostics, Gallium-68, and Other Radionuclides

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 194))

Abstract

Imaging hypoxia using positron emission tomography (PET) is of great importance for therapy of cancer. [18F]Fluoromisonidazole (FMISO) was the first PET agent for hypoxia imaging, and various radiolabeled nitroimidazole derivatives such as [18F]fluoroerythronitroimidazole (FETNIM), [18F]1-α-d-(2-deoxy-2-fluoroarabinofuranosyl)-2-nitroimidazole (FAZA), [18F]2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide (EF-5), and [18F]fluoroetanidazole (FETA) have been developed successively. To overcome the high cost of cyclotron installation, 68Ga-labeled nitroimidazole derivatives also have been developed. Another important hypoxia imaging agent is 64Cu-diacetyl-bis(N 4-methylthiosemicarbazone) (64Cu-ATSM), which can distribute in cancer tissue rapidly due to high lipophilicity. However, its application is limited due to high cost of radionuclide production. Although various hypoxia imaging agents have been reported and tested, hypoxia PET images still have to be improved, because of the low blood flow in hypoxic tissues and resulting low uptake of the agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antunes P, Ginj M, Zhang H, Waser B, Baum RP, Reubi JC, Maecke H (2007) Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging 34:982–993

    Article  PubMed  CAS  Google Scholar 

  • Ballinger JR (2001) Imaging hypoxia in tumors. Semin Nucl Med 31:321–329

    Article  PubMed  CAS  Google Scholar 

  • Barthel HWH, Collingridge DR, Brown G, Osman S, Luthra SK (2004) In vivo evaluation of [18F]fluoroetanidazole as a new marker for imaging tumour hypoxia with positron emission tomography. Br J Cancer 90:2232–2242

    PubMed  CAS  Google Scholar 

  • Blower PJ, Lewis JS, Zweit J (1996) Copper radionuclides and radiopharmaceuticals in nuclear medicine. Nucl Med Biol 23:957–980

    Article  PubMed  CAS  Google Scholar 

  • Breeman WA, Verbruggen AM (2007) The 68Ge/68Ga generator has high potential, but when can we use 68Ga-labelled tracers in clinical routine? Eur J Nucl Med Mol Imaging 34:978–981

    Article  PubMed  Google Scholar 

  • Brizel DM, Scully SP, Harrelson JM, Layfield LJ, Bean JM, Prosnitz LR, Dewhirst MW (1996) Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 56:941–943

    PubMed  CAS  Google Scholar 

  • Brown JM (1999) The hypoxic cell: a target for selective cancer therapy—eighteenth Bruce F. Cain memorial award lecture. Cancer Res 59:5863–5870

    PubMed  CAS  Google Scholar 

  • Busch TM, Hahn SM, Evans SM, Koch CJ (2000) Depletion of tumor oxygenation during photodynamic therapy: detection by the hypoxia marker EF3 [2-(2-nitroimidazol-1[H]-yl)-N-(3,3,3-trifluoropropyl)acetamide]. Cancer Res 60:2636–2642

    PubMed  CAS  Google Scholar 

  • Cowley AR, Dilworth JR, Donnelly PS, Labisbal E, Sousa A (2002) An unusual dimeric structure of a Cu(I) bis(thiosemicarbazone) complex: implications for the mechanism of hypoxic selectivity of the Cu(II) derivatives. J Am Chem Soc 124:5270–5271

    Article  PubMed  CAS  Google Scholar 

  • Dearling JL, Lewis JS, Mullen GE, Welch MJ, Blower PJ (2002) Copper bis(thiosemicarbazone) complexes as hypoxia imaging agents: structure-activity relationships. J Biol Inorg Chem 7:249–259

    Article  PubMed  CAS  Google Scholar 

  • Dolbier WR Jr, Li AR, Koch CJ, Shiue CY, Kachur AV (2001) [18F]-EF5, a marker for PET detection of hypoxia: synthesis of precursor and a new fluorination procedure. Appl Radiat Isot 54:73–80

    Article  PubMed  CAS  Google Scholar 

  • Fujibayashi Y, Taniuchi H, Yonekura Y, Ohtani H, Konishi J, Yokoyama A (1997) Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential. J Nucl Med 38:1155–1160

    PubMed  CAS  Google Scholar 

  • Fukumura T, Okada K, Suzuki H, Nakao R, Mukai K, Szelecsenyi F, Kovacs Z, Suzuki K (2006) An improved 62Zn/62Cu generator based on a cation exchanger and its fully remote-controlled preparation for clinical use. Nucl Med Biol 33:821–827

    Article  PubMed  CAS  Google Scholar 

  • Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379:88–91

    Article  PubMed  CAS  Google Scholar 

  • Green MA (1987) A potential copper radiopharmaceutical for imaging the heart and brain: copper-labeled pyruvaldehyde bis(N4-methylthiosemicarbazone). Int J Radiat Appl Instrum B 14:59–61

    Article  CAS  Google Scholar 

  • Green MA, Welch MJ (1989) Gallium radiopharmaceutical chemistry. Nucl Med Biol 16:435

    CAS  Google Scholar 

  • Gronroos T, Bentzen L, Marjamaki P, Murata R, Horsman MR, Keiding S, Eskola O, Haaparanta M, Minn H, Solin O (2004) Comparison of the biodistribution of two hypoxia markers [18F]FETNIM and [18F]FMISO in an experimental mammary carcinoma. Eur J Nucl Med Mol Imaging 31:513–520

    Article  PubMed  Google Scholar 

  • Grosu AL, Souvatzoglou M, Roper B, Dobritz M, Wiedenmann N, Jacob V, Wester HJ, Reischl G, Machulla HJ, Schwaiger M, Molls M, Piert M (2007) Hypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer. Int J Radiat Oncol Biol Phys 69:541–551

    Article  PubMed  CAS  Google Scholar 

  • Haynes NG, Lacy JL, Nayak N, Martin CS, Dai D, Mathias CJ, Green MA (2000) Performance of a 62Zn/62Cu generator in clinical trials of PET perfusion agent 62Cu-PTSM. J Nucl Med 41:309–314

    PubMed  CAS  Google Scholar 

  • He FQ, Deng XL, Wen BX, Liu YP, Sun XR, Xing LG, Minami A, Huang YH, Chen Q, Zanzonico PB, Ling CC, Li GC (2008) Noninvasive molecular imaging of hypoxia in human xenografts: comparing hypoxia-induced gene expression with endogenous and exogenous hypoxia markers. Cancer Res 68:8597–8606

    Article  PubMed  CAS  Google Scholar 

  • Hnatowich DJ (1977) A review of radiopharmaceutical development with short-lived generator-produced radionuclides other than 99mTc. Int J Appl Radiat Isot 28:169–181

    Article  PubMed  CAS  Google Scholar 

  • Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515

    PubMed  CAS  Google Scholar 

  • Hoigebazar L, Jeong JM, Choi SY, Choi JY, Shetty D, Lee YS, Lee DS, Chung JK, Lee MC, Chung YK (2010) Synthesis and characterization of nitroimidazole derivatives for Ga-68-labeling and testing in tumor xenografted mice. J Med Chem 53:6378–6385

    Article  PubMed  CAS  Google Scholar 

  • Hoigebazar L, Jeong JM, Hong MK, Kim YJ, Lee JY, Shetty D, Lee YS, Lee DS, Chung JK, Lee MC (2011) Synthesis of (68)Ga-labeled DOTA-nitroimidazole derivatives and their feasibilities as hypoxia imaging PET tracers. Bioorg Med Chem 19:2176–2181

    Article  PubMed  CAS  Google Scholar 

  • Hossmann KA (2003) Non-invasive imaging methods for the characterization of the pathophysiology of brain ischemia. Acta Neurochir Suppl 86:21–27

    Article  PubMed  CAS  Google Scholar 

  • Jeong JM, Hong MK, Chang YS, Lee YS, Kim YJ, Cheon GJ, Lee DS, Chung JK, Lee MC (2008) Preparation of a promising angiogenesis PET imaging agent: 68Ga-labeled c(RGDyK)-isothiocyanatobenzyl-1,4,7-triazacyclononane-1,4,7-triacetic acid and feasibility studies in mice. J Nucl Med 49:830–836

    Article  PubMed  CAS  Google Scholar 

  • Koch CJ (2002) Measurement of absolute oxygen levels in cells and tissues using oxygen sensors and 2-nitroimidazole EF5. Redox Cell Biol Genet, Part A 352:3–31

    Article  CAS  Google Scholar 

  • Komar G, Seppanen M, Eskola O, Lindholm P, Gronroos TJ, Forsback S, Sipila H, Evans SM, Solin O, Minn H (2008) 18F-EF5: a new PET tracer for imaging hypoxia in head and neck cancer. J Nucl Med 49:1944–1951

    Article  PubMed  Google Scholar 

  • Kubota K, Tada M, Yamada S, Hori K, Saito S, Iwata R, Sato K, Fukuda H, Ido T (1999) Comparison of the distribution of fluorine-18 fluoromisonidazole, deoxyglucose and methionine in tumour tissue. Eur J Nucl Med 26:750–757

    Article  PubMed  CAS  Google Scholar 

  • Kumar P, Naimi E, McEwan AJ, Wiebe LI (2010) Synthesis, radiofluorination, and hypoxia-selective studies of FRAZ: a configurational and positional analogue of the clinical hypoxia marker, [18F]-FAZA. Bioorg Med Chem 18:2255–2264

    Article  PubMed  CAS  Google Scholar 

  • Kumar PSD, Xia H, McEwan AJB, Machulla H-J, Wiebe LI (1999) Fluoroazomycin arabinoside (FAZA): synthesis, 2H and 3H-labelling and preliminary biological evaluation of a novel 2-nitroimidazole marker of tissue hypoxia. J Labelled Compds Radiopharm 42:3–16

    Article  CAS  Google Scholar 

  • Lawrentschuk N, Poon AMT, Foo SS, Putra LGJ, Murone C, Davis ID, Bolton DM, Scott AM (2005) Assessing regional hypoxia in human renal tumours using 18F-fluoromisonidazole positron emission tomography. BJU Int 96:540–546

    Article  PubMed  Google Scholar 

  • Lee ST, Scott AM (2007) Hypoxia positron emission tomography imaging with 18f-fluoromisonidazole. Semin Nucl Med 37:451–461

    Article  PubMed  Google Scholar 

  • Lehtio K, Oikonen V, Gronroos T, Eskola O, Kalliokoski K, Bergman J, Solin O, Grenman R, Nuutila P, Minn H (2001) Imaging of blood flow and hypoxia in head and neck cancer: initial evaluation with [O-15]H2O and [F-18]fluoroerythronitroimidazole PET. J Nucl Med 42:1643–1652

    PubMed  CAS  Google Scholar 

  • Lewis JS, Laforest R, Dehdashti F, Grigsby PW, Welch MJ, Siegel BA (2008) An imaging comparison of 64Cu-ATSM and 60Cu-ATSM in cancer of the uterine cervix. J Nucl Med 49:1177–1182

    Article  PubMed  Google Scholar 

  • Lewis JS, McCarthy DW, McCarthy TJ, Fujibayashi Y, Welch MJ (1999) Evaluation of 64Cu-ATSM in vitro and in vivo in a hypoxic tumor model. J Nucl Med 40:177–183

    PubMed  CAS  Google Scholar 

  • Lewis JS, Sharp TL, Laforest R, Fujibayashi Y, Welch MJ (2001) Tumor uptake of copper-diacetyl-bis(N(4)-methylthiosemicarbazone): effect of changes in tissue oxygenation. J Nucl Med 42:655–661

    PubMed  CAS  Google Scholar 

  • Lord EM, Harwell L, Koch CJ (1993) Detection of hypoxic cells by monoclonal antibody recognizing 2-nitroimidazole adducts. Cancer Res 53:5721–5726

    PubMed  CAS  Google Scholar 

  • Martin GV, Caldwell JH, Rasey JS, Grunbaum Z, Cerqueira M, Krohn KA (1989) Enhanced binding of the hypoxic cell marker [3H]fluoromisonidazole in ischemic myocardium. J Nucl Med 30:194–201

    PubMed  CAS  Google Scholar 

  • Maurer RI, Blower PJ, Dilworth JR, Reynolds CA, Zheng Y, Mullen GE (2002) Studies on the mechanism of hypoxic selectivity in copper bis(thiosemicarbazone) radiopharmaceuticals. J Med Chem 45:1420–1431

    Article  PubMed  CAS  Google Scholar 

  • McCarthy DW, Bass LA, Cutler PD, Shefer RE, Klinkowstein RE, Herrero P, Lewis JS, Cutler CS, Anderson CJ, Welch MJ (1999) High purity production and potential applications of copper-60 and copper-61. Nucl Med Biol 26:351–358

    Article  PubMed  CAS  Google Scholar 

  • McCarthy DW, Shefer RE, Klinkowstein RE, Bass LA, Margeneau WH, Cutler CS, Anderson CJ, Welch MJ (1997) Efficient production of high specific activity 64Cu using a biomedical cyclotron. Nucl Med Biol 24:35–43

    Article  PubMed  CAS  Google Scholar 

  • McManus ME, Lang MA, Stuart K, Strong J (1982) Activation of misonidazole by rat liver microsomes and purified NADPH-cytochrome c reductase. Biochem Pharmacol 31:547–552

    Article  PubMed  CAS  Google Scholar 

  • Nunn A, Linder K, Strauss HW (1995) Nitroimidazoles and imaging hypoxia. Eur J Nucl Med 22:265–280

    Article  PubMed  CAS  Google Scholar 

  • Obata A, Yoshimi E, Waki A, Lewis JS, Oyama N, Welch MJ, Saji H, Yonekura Y, Fujibayashi Y (2001) Retention mechanism of hypoxia selective nuclear imaging/radiotherapeutic agent cu-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) in tumor cells. Ann Nucl Med 15:499–504

    Article  PubMed  CAS  Google Scholar 

  • Overgaard J (1994) Clinical evaluation of nitroimidazoles as modifiers of hypoxia in solid tumors. Oncol Res 6:509–518

    PubMed  CAS  Google Scholar 

  • Padhani AR (2005) Where are we with imaging oxygenation in human tumours? Cancer Imaging 5:128–130

    Article  PubMed  Google Scholar 

  • Parliament MB, Chapman JD, Urtasun RC, McEwan AJ, Golberg L, Mercer JR, Mannan RH, Wiebe LI (1992) Non-invasive assessment of human tumour hypoxia with 123I-iodoazomycin arabinoside: preliminary report of a clinical study. Br J Cancer 65:90–95

    Article  PubMed  CAS  Google Scholar 

  • Piert M, Machulla HJ, Picchio M, Reischl G, Ziegler S, Kumar P, Wester HJ, Beck R, McEwan AJB, Wiebe LI, Schwaiger M (2005) Hypoxia-specific tumor imaging with F-18-fluoroazomycin arabinoside. J Nucl Med 46:106–113

    PubMed  Google Scholar 

  • Postema EJ, McEwan AJ, Riauka TA, Kumar P, Richmond DA, Abrams DN, Wiebe LI (2009) Initial results of hypoxia imaging using 1-alpha-D: -(5-deoxy-5-[18F]-fluoroarabinofuranosyl)-2-nitroimidazole (18F-FAZA). Eur J Nucl Med Mol Imaging 36:1565–1573

    Article  PubMed  CAS  Google Scholar 

  • Rajendran JG, Schwartz DL, O’Sullivan J, Peterson LM, Ng P, Scharnhorst J, Grierson JR, Krohn KA (2006) Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clin Cancer Res 12:5435–5441

    Article  PubMed  CAS  Google Scholar 

  • Rasey JS, Hofstrand PD, Chin LK, Tewson TJ (1999) Characterization of [F-18]fluoroetanidazole, a new radiopharmaceutical for detecting tumor hypoxia. J Nucl Med 40:1072–1079

    PubMed  CAS  Google Scholar 

  • Rasey JS, Koh WJ, Evans ML, Peterson LM, Lewellen TK, Graham MM, Krohn KA (1996) Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys 36:417–428

    Article  PubMed  CAS  Google Scholar 

  • Reischl G, Dorow DS, Cullinane C, Katsifis A, Roselt P, Binns D, Hicks RJ (2007) Imaging of tumor hypoxia with [I-124] IAZA in comparison with [F-18] FMISO and [F-18]FAZA—first small animal PET results. J Pharm Pharm Sci 10:203–211

    PubMed  CAS  Google Scholar 

  • Rumsey WL, Patel B, Linder KE (1995) Effect of graded hypoxia on retention of technetium-99m-nitroheterocycle in perfused rat heart. J Nucl Med 36:632–636

    PubMed  CAS  Google Scholar 

  • Shetty D, Jeong JM, Ju CH, Kim YJ, Lee JY, Lee YS, Lee DS, Chung JK, Lee MC (2010a) Synthesis and evaluation of macrocyclic amino acid derivatives for tumor imaging by gallium-68 positron emission tomography. Bioorg Med Chem 18:7338–7347

    Article  PubMed  CAS  Google Scholar 

  • Shetty D, Jeong JM, Ju CH, Lee YS, Jeong SY, Choi JY, Yang BY, Lee DS, Chung JK, Lee MC (2010b) Synthesis of novel 68Ga-labeled amino acid derivatives for positron emission tomography of cancer cells. Nucl Med Biol 37:893–902

    Article  PubMed  CAS  Google Scholar 

  • Sorger D, Patt M, Kumar P, Wiebe LI, Barthel H, Seese A, Dannenberg C, Tannapfel A, Kluge R, Sabri O (2003) [18F]Fluoroazomycinarabinofuranoside (18FAZA) and [18F]Fluoromisonidazole (18FMISO): a comparative study of their selective uptake in hypoxic cells and PET imaging in experimental rat tumors. Nucl Med Biol 30:317–326

    Article  PubMed  CAS  Google Scholar 

  • Souvatzoglou M, Grosu AL, Roper B, Krause BJ, Beck R, Reischl G, Picchio M, Machulla HJ, Wester HJ, Piert M (2007) Tumour hypoxia imaging with [18F]FAZA PET in head and neck cancer patients: a pilot study. Eur J Nucl Med Mol Imaging 34:1566–1575

    Article  PubMed  CAS  Google Scholar 

  • Stone HB, Brown JM, Phillips TL, Sutherland RM (1993) Oxygen in human tumors: correlations between methods of measurement and response to therapy. Summary of a workshop held at the National Cancer Institute, Bethesda, Maryland, 19–20 Nov 1992. Radiat Res 136: 422–434

    Google Scholar 

  • Taniuchi H, Fujibayashi Y, Yonekura Y, Konishi J, Yokoyama A (1997) Hyperfixation of copper-62-PTSM in rat brain after transient global ischemia. J Nucl Med 38:1130–1134

    PubMed  CAS  Google Scholar 

  • Thomlinson RH, Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9:539–549

    Article  PubMed  CAS  Google Scholar 

  • Vaupel P, Harrison L (2004) Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist 9(Suppl 5):4–9

    Article  PubMed  Google Scholar 

  • Vavere AL, Lewis JS (2007) Cu-ATSM: a radiopharmaceutical for the PET imaging of hypoxia. Dalton Trans 43:4893–4902

    Article  PubMed  Google Scholar 

  • Walton MI, Workman P (1987) Nitroimidazole bioreductive metabolism. Quantitation and characterisation of mouse tissue benznidazole nitroreductases in vivo and in vitro. Biochem Pharmacol 36:887–896

    Article  PubMed  CAS  Google Scholar 

  • Yang DJ, Wallace S, Cherif A, Li C, Gretzer MB, Kim EE, Podoloff DA (1995) Development of F-18-labeled fluoroerythronitroimidazole as a PET agent for imaging tumor hypoxia. Radiology 194:795−800

    PubMed  CAS  Google Scholar 

  • Yapp DT, Woo J, Kartono A, Sy J, Oliver T, Skov KA, Koch CJ, Adomat H, Dragowska WH, Fazli L, Ruth T, Adam MJ, Green D, Gleave M (2007) Non-invasive evaluation of tumour hypoxia in the shionogi tumour model for prostate cancer with 18F-EF5 and positron emission tomography. BJU Int 99:1154–1160

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Min Jeong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoigebazar, L., Jeong, J.M. (2013). Hypoxia Imaging Agents Labeled with Positron Emitters. In: Baum, R., Rösch, F. (eds) Theranostics, Gallium-68, and Other Radionuclides. Recent Results in Cancer Research, vol 194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27994-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27994-2_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27993-5

  • Online ISBN: 978-3-642-27994-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics