68Ga-Labeled Bombesin Analogs for Receptor-Mediated Imaging

  • Raunak Varshney
  • Puja P. Hazari
  • P. Fernandez
  • J. Schulz
  • M. Allard
  • Anil  K. Mishra
Conference paper
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 194)


Targeted receptor-mediated imaging techniques have become crucial tools in present targeted diagnosis and radiotherapy as they provide accurate and specific diagnosis of disease information. Peptide-based pharmaceuticals are gaining popularity, and there has been vast interest in developing 68Ga-labeled bombesin (Bn) analogs. The gastrin-releasing peptide (GRP) family and its Bn analog have been implicated in the biology of several human cancers. The three bombesin receptors GRP, NMB, and BRS-3 receptor are most frequently ectopically expressed by common, important malignancies. The low expression of Bn/GRP receptors in normal tissue and relatively high expression in a variety of human tumors can be of biological importance and form a molecular basis for Bn/GRP receptor-mediated imaging. To develop a Bn-like peptide with favorable tumor targeting and pharmacokinetic characteristics for possible clinical use, several modifications in the Bn-like peptides, such as the use of a variety of chelating agents, i.e., acyclic and macrocyclic agents with different spacer groups and with different metal ions (gallium), have been performed in recent years without significant disturbance of the vital binding scaffold. The favorable physical properties of 68Ga, i.e., short half-life, and the fast localization of small peptides make this an ideal combination to study receptor-mediated imaging in patients.


Positron Emission Tomography Positron Emission Tomography Imaging Bifunctional Chelate Bombesin Receptor Fast Blood Clearance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





Aminohexanoic acid








Bombesin receptor subtype 3


p-aminobenzyldiglycolic acid






1,4,7,10-Triazacyclododecanetetraacetic acid


Diethylenetriaminepentaacetic acid


Methionine removed


(4R,5S)-4-Amino-5-methylheptanoic acid


Gastrin-releasing peptide


Gastrin-releasing peptide receptor


G-protein receptor










Et = ethyl


Neuromedin B


Neuromedin B receptor


1,4,7-Triazacyclononanetriacetic acid


(2-Aminoethyl)-carboxymethyl ether


15-Amino-4,7,10,13-tetraoxapentadecanoic acid


Positron emission tomography




(Arginine-glycine-aspartic acid)


Single-photon emission computed tomography


Statine: (3S,4S)-4-amino-3-hydroxy-6-methylheptanoic acid


β-(2-Thienyl) alanine


3-(2-Thienyl) alanine


2,3,4,9-Tetrahydro-1H-pyridol[3,4-b]indol-3-carboxylic acid


  1. Abd-Elgaliel WR, Gallazzi F, Garrison JC et al (2008) Design, synthesis, and biological evaluation of an antagonist bombesin analog as targeting vector. Bioconjug Chem 19:2040–2048PubMedGoogle Scholar
  2. Abiraj K, Jaccard H, Kretzschmar M et al (2008) Novel DOTA-based prochelator for divalent peptide vectorization: synthesis of dimeric bombesin analogs for multimodality tumor imaging and therapy. Chem Commun (Camb) 28(28):3248–3250Google Scholar
  3. Abiraj K, Mansi R, Tamma ML et al (2010) Tetraamine-derived bifunctional chelators for technetium-99m labeling: synthesis, bioconjugation and evaluation as targeted SPECT imaging probes for GRP-receptor-positive tumors. Chemistry 16:2115–2124PubMedGoogle Scholar
  4. Achilefu S, Jimenez HN, Dorshow RB et al (2002) Synthesis, in vitro receptor binding, and in vivo evaluation of fluorescein and carbocyanine peptide-based optical contrast agents. J Med Chem 45:2003–2015PubMedGoogle Scholar
  5. Akeson M, Sainz E, Mantey SA et al (1997) Identification of four amino acids in the gastrin-releasing peptide receptor that are required for high affinity agonist binding. J Biol Chem 272:17405–17409PubMedGoogle Scholar
  6. Aloj L, Morelli G (2004) Design, synthesis and preclinical evaluation of radiolabeled peptides for diagnosis and therapy. Curr Pharm Des 10:3009–3031PubMedGoogle Scholar
  7. Alves S, Correia JD, Santos I et al (2006) Pyrazolyl conjugates of bombesin: a new tridentate ligand framework for the stabilization of fac-[M(CO)3] + moiety. Nucl Med Biol 33:625–634PubMedGoogle Scholar
  8. Anastasi A, Erspamer V, Bucci M (1971) Isolation and structure of bombesin and alytesin, two analogous active peptides from the skin of the European amphibians Bombina and Alytes. Experientia 27:166–167PubMedGoogle Scholar
  9. Anderson CJ, Welch MJ (1999) Radiometal labeled agents (non-technetium) for diagnostic imaging. Chem Rev 99:2219–2234PubMedGoogle Scholar
  10. Aprikian AG, Tremblay L, Han K et al (1997) Bombesin stimulates the motility of human prostate-carcinoma cells through tyrosine phosphorylation of focal adhesion kinase and of integrin-associated proteins. Int J Cancer 72:498–504PubMedGoogle Scholar
  11. Avis IL, Kovacs TOG, Kasprzyk PG et al (1991) Preclinical evaluation of an anti-autocrine growth factor monoclonal antibody for treatment of patients with small cell lung cancer. J Natl Cancer Inst 83:1470–1476PubMedGoogle Scholar
  12. Battey J, Wada E, Corjay M et al (1992) Molecular genetic analysis of two distinct receptors for mammalian bombesin-like peptides. J Natl Cancer Inst Monogr 13:141–144PubMedGoogle Scholar
  13. Biddlecombe GB, Rogers BE, de Visser M et al (2007) Molecular imaging of gastrin-releasing peptide receptor-positive tumors in mice using 64Cu- and 86Y-DOTA-(Pro 1, Tyr 4)-bombesin(1–14). Bioconjug Chem 18:724–730PubMedGoogle Scholar
  14. Blower PJ, Lewis JS, Zweit J (1996) Copper radionuclide and radiopharmaceuticals in nuclear medicine. Nucl Med Biol 23:957–980PubMedGoogle Scholar
  15. Brans L, Maes V, Garcia-Garayoa E et al (2008) Glycation methods for bombesin analogs containing the (NalphaHis) Ac chelator for 99mTc(CO)3 radiolabeling. Chem Biol Drug Des 72:496–506PubMedGoogle Scholar
  16. Breeman WA, Kwekkeboom DJ, Kooij PP et al (1995) Effect of dose and specific activity on tissue distribution of indium-111-pentetreotide in rats. J Nucl Med 36:623–627PubMedGoogle Scholar
  17. Breeman WA, Hofland LJ, de Jong M et al (1999) Evaluation of radiolabeled bombesin analogs for receptortargeted scintigraphy and radiotherapy. Int J Cancer 81:658–665PubMedGoogle Scholar
  18. Breeman WA, de Jong M, Erion JL et al (2002) Preclinical comparison of (111)In-labeled DTPA- or DOTA-bombesin analogs for receptor-targeted scintigraphy and radionuclide therapy. J Nucl Med 43:1650–1656PubMedGoogle Scholar
  19. Breeman WA, de Jong M, de Blois E et al (2005) Radiolabeling DOTA-peptides with 68Ga. Eur J Nucl Med Mol Imaging 32:478–485PubMedGoogle Scholar
  20. Broan CJ, Cox JPL, Craig AS et al (1991) Structure and solution stability of indium and gallium complexes of 1,4,7-triazacyclononatriacetate and yttrium complexes of 1,4,7,10-tetraazacyclododecanetetraacetate and related ligans: kinectically stable complexes for use in imaging and radioimmunotheraphy. X-ray molecular structure of the indium and gallium complexes of 1,4,7-triazacyclononane-1,4,7-triacetic acid. J Chem Soc Perkin Trans 2:87–99Google Scholar
  21. Brom M, Joosten L, Laverman P et al (2011) Preclinical evaluation of 68Ga-DOTA-minigastrin for the detection of cholecystokinin-2/gastrin receptor-positive tumors. Mol Imaging 10:144–152PubMedGoogle Scholar
  22. Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–571PubMedGoogle Scholar
  23. Brown M, Tache Y, Fisher D (1979) Central nervous system action of bombesin: mechanism to induce hyperglycemia. Endocrinology 105:660–665PubMedGoogle Scholar
  24. Brunner UK, Renn O, Li M et al (1995) In principal of nuclear medicine, Philadelphia, pp 220–229Google Scholar
  25. Bunnett N (1994) Gastrin-releasing peptide. In: Walsh JH, Dockray GJ (eds) Gut peptides: biochemistry, and physiology. Raven, New York, pp 423–445Google Scholar
  26. Cai RZ, Reile H, Armatis P et al (1994) Potent bombesin antagonists with C terminal Leu-ψ(CH2-N)-Tac-NH2 or its derivatives. Proc Natl Acad Sci USA 91:12664–12668PubMedGoogle Scholar
  27. Carlsson J, Forssell-Aronsson E, Hietala SO et al (2003) Tumor theraphy with radionuclides: assessment of progress and problems. Radiother Oncol 66:107–117PubMedGoogle Scholar
  28. Cescato R, Maina T, Nock B et al (2008) Bombesin receptor antagonists may be preferable to agonists for tumor targeting. J Nucl Med 49:318–326PubMedGoogle Scholar
  29. Chen X, Park R, Hou Y et al (2004) MicroPET and autoradiographic imaging of GRP receptor expression with 64Cu-DOTA-[Lys3]bombesin in human prostate adenocarcinoma xenografts. J Nucl Med 45:1390–1397PubMedGoogle Scholar
  30. Chong HS, Garmestani K, Ma D et al (2002) Synthesis and biological evalution of novel macrocyclic ligands with pendent donor groups as potential yttrium chelators for radioimmunotheraphy with improved complex formation kinectics. J Med Chem 45:3458–3464PubMedGoogle Scholar
  31. Christiansen J, Holst JJ, Kalaja E (1976) Inhibition of gastric acid in man by exogenous and endogenous pancreatic glucagon. Gastroenterology 70:688–692PubMedGoogle Scholar
  32. Clarke ET, Martell AE (1991) Stabilities of the trivalent metal ion complexes of the tetracetate derivatives of 12-, 13-, and 14-membered tetraazamacrocycles. Inorg Chim Acta 190:37–46Google Scholar
  33. Cornelio DB, Roesler R, Schwartsmann G (2007) Gastrin-releasing peptide receptor as a molecular target in experimental anticancer therapy. Ann Oncol 18:1457–1466PubMedGoogle Scholar
  34. Craig AS, Parker D, Adams H et al (1989) Stability Ga-71 Nmr and crystal-structure of a Neutral Gallium (iii) complex of 1,4,7-Triazacyclononanetriacetate—a potential radiopharmaceutical. J Chem Soc-Chem Communications, pp 1793–1794Google Scholar
  35. Cutler CS, Smith CJ, Ehrhardt GJ et al (2000) Current and potential therapeutic uses of lanthanide radioisotopes. Cancer Biother Radiopharm 15:531–545PubMedGoogle Scholar
  36. Cuttitta F, Carney DN, Mulshine J et al (1985) Bombesin-like peptides can function as autocrine growth factors in human small-cell lung cancer. Nature 316:823–825PubMedGoogle Scholar
  37. de Jong M, Bakker WH, Krenning EP et al (1997) Yttrium -90 and indium -111 labeling receptor binding and biodistribution of [DOTA0, d-Phe1, Tyr3]octreotide, a promising somastostatin analog for radionuclide theraphy. Eur J Nucl Med 24:368–371PubMedGoogle Scholar
  38. de Visser M, Bernard HF, Erion JL et al (2007) Novel (111) In-labeled bombesin analogs analogs for molecular imaging of prostate tumors. Eur J Nucl Med Mol Imaging 34:1228–1238PubMedGoogle Scholar
  39. Dimitrakopoulou-Strauss A, Hohenberger P, Eisenhut M et al (2006) J Nucl Med 47:102PGoogle Scholar
  40. Dimitrakopoulou-Strauss A, Hohenberger P, Haberkorn U et al (2007) 68Ga-labeled bombesin studies in patients with gastrointestinal stromal tumors: comparisonwith 18F-FDG. J Nucl Med 48:1245–1250PubMedGoogle Scholar
  41. Durkan K, Lambrecht FY, Unak P et al (2007) Radiolabeling of bombesin-like peptide with 99 mTc: 99 mTc-litorin and biodistribution in rats. Bioconjug Chem 18:1516–1520PubMedGoogle Scholar
  42. Dymov AM, Savostin AP (1968) Analytical chemistry of gallium. Ann Arbor: Ann Arbor Science, MoscowGoogle Scholar
  43. Eary JF (2001) PET imaging for planning cancer theraphy. J Nucl Med 42:770–771PubMedGoogle Scholar
  44. Eisenwiener KP, Prata MI, Buschmann I et al (2002) NODAGATOC, a new chelator-coupled somatostatin analog labeled with [67/68Ga] and [111In] for SPECT, PET and targeted therapeutic application of somatostatin receptor (hsst2) expressing tumors. Bioconjug Chem 13:530–541PubMedGoogle Scholar
  45. Erspamer V (1988) Discovery, isolation and characterization of bombesin- like peptides. Ann N Y Acad Sci 547:3–9PubMedGoogle Scholar
  46. Erspamer V, Erpamer GF, Inselvini M (1970) Some pharmacological actions of alytesin and bombesin. J Pharm Pharmacol 22:875–876PubMedGoogle Scholar
  47. Faintuch BL, Teodoro R, Duatti A et al (2008) Radiolabeled bombesin analogs for prostate cancer diagnosis: preclinical studies. Nucl Med Biol 35:401–411PubMedGoogle Scholar
  48. Fathi Z, Corjay MH, Shapira H et al (1993) BRS-3: a novel bombesin receptor subtype selectively expressed in testis, and lung carcinoma cells. J Biol Chem 268:5979–5984PubMedGoogle Scholar
  49. Ferro-Flores G, Arteaga de Murphy C, Rodriguez-Cortes J et al (2006) Preparation and evaluation of 99 mTc-EDDA/HYNIC-[Lys 3]-bombesin for imaging gastrin-releasing peptide receptor-positive tumors. Nucl Med Commun 27:371–376PubMedGoogle Scholar
  50. Fichna J, Janecka A (2003) Synthesis of target-specific radiolabed peptide for diagnostic imaging. Bioconjug Chem 14:3–17PubMedGoogle Scholar
  51. Fischer JB, Schonbrunn A (1988) The bombesin receptor is coupled to a guanine nucleotide-binding protein which is insensitive to pertussis and cholera toxins. J Biol Chem 263:2808–2816PubMedGoogle Scholar
  52. Forrer F, Valkema R, Kwekkeboom DJ et al (2007) Neuroendocrine tumors. Peptide receptor radionuclide therapy. Best Pract Res Clin Endocrinol Metab 21:111–129PubMedGoogle Scholar
  53. Fragogeorgi EA, Zikos C, Gourni E et al (2009) Spacer site modifications for the improvement of the in vitro and in vivo binding properties of (99m)Tc-N(3)S-Xbombesin[2–14] derivatives. Bioconjug Chem 20:856–867PubMedGoogle Scholar
  54. Friedlander M, Brooks PC, Shaffer RW et al (1995) Definition of two angiogenic pathways by distinct alpha v integrins. Science 270:1500–1502PubMedGoogle Scholar
  55. Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2:683–693PubMedGoogle Scholar
  56. Garcia GE, Ruegg D, Blauenstein P et al (2007a) Chemical and biological characterization of new Re(CO)3/[99 mTc](CO)3 bombesin analogs. Nucl Med Biol 34:17–28Google Scholar
  57. Garcia GE, Schweinsberg C, Maes V et al (2007b) A new [99 mTc] bombesin analogs with improved biodistribution for targeting gastrin releasing-peptide receptorpositive tumors. Q J Nucl Med Mol Imaging 51:42–50Google Scholar
  58. Garrison JC, Rold TL, Sieckman GL et al (2007) In vivo evaluation and small-animal PET/CT of a prostate cancer mouse model using 64Cu bombesin analogs: Side-by-side comparison of the CB-TE2A and DOTA chelation systems. J Nucl Med 48:1327–1337PubMedGoogle Scholar
  59. Garrison JC, Rold TL, Sieckman GL et al (2008) Evaluation of the pharmacokinetic effects of various linking group using the 111In-DOTA-X-BBN (7–14)NH2 structural paradigm in a prostate cancer model. Bioconjug Chem 19:1803–1812PubMedGoogle Scholar
  60. Ghatei MA, George SK, Major JH et al (1984) Bombesin-like immunoreactivity in the pancreas of man and other mammalian species. Experientia 40:884–886PubMedGoogle Scholar
  61. Gibril F, Jensen RT (2004) Diagnostic uses of radiolabeled somatostatin-receptor analogs in gastroenteropancreatic endocrine tumors. Dig Liver Dis 36:S106–S120PubMedGoogle Scholar
  62. Giraud AS, Dumesny C, Whitley JC et al (2010) Isolation, identification and biological activity of gastrin-releasing peptide 1–46 (GRP 1–46), the primary GRP gene-derived peptide product of the pregnant ovine endometrium. Peptides 31:284–290PubMedGoogle Scholar
  63. Gonzalez N, Moody TW, Igarashi H et al (2008) Bombesin-related peptides and their receptors: recent advances in their role in physiology and disease states. Curr Opin Endocrinol Diabetes Obes 15:58–64PubMedGoogle Scholar
  64. Gonzalez N, Mantey SA, Pradhan TK et al (2009) Characterization of putative GRP- and NMB-receptor antagonist’s interaction with human receptors. Peptides 30:1473–1486PubMedGoogle Scholar
  65. Gourni E, Paravatou M, Bouziotis P et al (2006) Evaluation of a series of new 99 mTc-labeled bombesin-like peptides for early cancer detection. Anticancer Res 26:435–438PubMedGoogle Scholar
  66. Gourni E, Bouziotis P, Benaki D et al (2009) Structural assessment and biological evaluation of two N3S bombesin derivatives. J Med Chem 52:4234–4246PubMedGoogle Scholar
  67. Green MA, Welch MJ (1989) Gallium radiopharmaceutical chemistry. Nucl Med Biol 16:435–448Google Scholar
  68. Gugger M, Reubi JC (1999) Gastrin-releasing peptide receptors in non-neoplastic and neoplastic human breast. Am J Pathol 155:2067–2076PubMedGoogle Scholar
  69. Hajri A, Koenig M, Balboni G et al (1996) Expression and characterization of gastrin-releasing peptide receptor in normal and cancerous pancreas. Pancreas 12:25–35PubMedGoogle Scholar
  70. Halmos G, Schally AV (1997) Reduction in receptors for bombesin and epidermal growth factor in xenografts of human small-cell lung cancer after treatment with bombesin antagonist RC-3095. Proc Natl Acad Sci USA 94:956–960PubMedGoogle Scholar
  71. Harris WR, Messori LA (2002) A comparative study of aluminium(III), gallium(III), indium(III), and thallium(III) binding to human serum tansferrin. Coord Chem Rev 228:237–262Google Scholar
  72. Haubner R, Bruchertseifer F, Bock M et al (2004) Synthesis and biological evalution of a (99m) Tc-labeled Cyclic RGD peptide for imaging the alphabeta3 expression. Nuklearmedizin 43:26–32PubMedGoogle Scholar
  73. Heasley LE (2001) Autocrine and paracrine signaling through neuropeptide receptors in human cancer. Oncogene 20:1563–1569PubMedGoogle Scholar
  74. Hellmich MR, Ives KL, Udupi V et al (1999) Multiple protein kinase pathways are involved in gastrin-releasing peptide receptor-regulated secretion. J Biol Chem 274:23901–23909PubMedGoogle Scholar
  75. Heppeler A, Froidevaux S, Macke HR et al (1999) Radiometal-labeled macrocyclic chelator-derivatised somastostatin analog with superb tumor-targeting properties and potential for receptor mediated internal radiotheraphy. Chem Eur J 5:1974–1981Google Scholar
  76. Heppler A, Froidevaux S, Eberle AN et al (2000) Receptor imaging for tumor localisation and theraphy with radioisopes. Curr Med Chem 7:971–994Google Scholar
  77. Hnatowich DJ, Friedman B, Clancy B et al (1981) Labeling of performed liposomes with Ga-67 and Tc-99 m by chelation. J Nucl Med 22:810–814PubMedGoogle Scholar
  78. Ho CL, Chen LC, Lee WC et al (2009) Receptor-binding, biodistribution, dosimetry, and micro-SPECT/CT imaging of 111In-[DTPA(1), Lys(3), Tyr(4)]- bombesin analog in human prostate tumor-bearing mice. Cancer Biother Radiopharm 24:435–443PubMedGoogle Scholar
  79. Hoffman TJ, Gali H, Smith CJ et al (2003) Novel series of 111In-labeled bombesin analogs as potential radiopharmaceuticals for specific targeting of gastrin-releasing peptide receptors expressed on human prostate cancer cells. J Nucl Med 44:823–831PubMedGoogle Scholar
  80. Hofmann M, Maecke H, Borner R et al (2001) Biokinectics and imaging with the somatostatin receptor PET radioligand (68) Ga-DOTATOC: preliminary data. Eur J Nucl Med 28:1751–1757PubMedGoogle Scholar
  81. Hofmann M, Machtens S, Stief C et al (2004) Feasibility of Ga-68-DOTABOM PET in prostate carcinoma patients [abstract]. J Nucl Med 45:449PGoogle Scholar
  82. Hohne A, Mu L, Honer M et al (2008) Synthesis, 18F-labeling, and in vitro and in vivo studies of bombesin peptides modified with silicon-based building blocks. Bioconjug Chem 19:1871–1879PubMedGoogle Scholar
  83. Hu F, Cutler CS, Hoffman T et al (2002) Pm-149 DOTA bombesin nalogs for potential radiotherapy—In vivo comparison with Sm-153 and Lu-177 labeled DO3A-amide-Ala-BBN(7–14)NH2. Nucl Med Biol 29:423–430PubMedGoogle Scholar
  84. Jensen RT (1994) Receptors for bombesins. In: Johnson LR (ed) Physiology of the Gastrointestinal Tract. Raven, New York, pp 1387–1393Google Scholar
  85. Jensen RT (1997) Peptide therapy. Recent advances in the use of somatostatin and other peptide receptor agonists and antagonists. In: Lewis JH, Dubois A (eds) Current clinical topics in gastrointestinal pharmacology. Blackwell Science, Malden, pp 144–223Google Scholar
  86. Jensen RT, Coy DH (1991) Progress in the development of potent bombesin receptor antagonists. Trends Pharmacol Sci 12:13–19PubMedGoogle Scholar
  87. Jensen RT, Moody TW (2006) Bombesin-related peptides and neurotensin: effects on cancer growth/proliferation and cellular signaling in cancer. In: Kastin AJ (ed) Handbook of biologically active peptides, 1st edn. Amsterdam, Elsevier, pp 429–434Google Scholar
  88. Jensen RT, Battey JF, Spindel ER et al (2008) International Union of Pharmacology. LVIII. Mammalian Bombesin Receptors: Nomenclature, distribution, pharmacology, signalling and functions in normal and disease states. Pharmacol Rev 60:1–42PubMedGoogle Scholar
  89. Kane MA, Toi-Scott M, Johnson GL et al (1996) Bombesin-like peptide receptors in human bronchial epithelial cells. Peptides 17:111–118PubMedGoogle Scholar
  90. Kiehne K, Herzig KH, Folsch UR (2002) Differential activation of p43ERK2 and p125FAK by cholecystokinin and bombesin in the secretion and proliferation of the pancreatic amphicrine cell line AR42J. Pancreatology 2:46–53PubMedGoogle Scholar
  91. Kim HJ, Evers BM, Guo Y et al (1996) Bombesin-mediated AP-1 activation in a human gastric cancer (SIIA). Surgery 120:130–136; discussion 136–137Google Scholar
  92. Koh SW, Leyton J, Moody TW (1999) Bombesin activates MAP kinase in non-small cell lung cancer cells. Peptides 20:121–126PubMedGoogle Scholar
  93. Koizumi M, Endo K, Kunimatsu M et al (1987) Preparation of 67 Ga-labeled antibodies using deferoxamine as a bifunctional chelate an improved method. J Immunological Methods 104:93–102Google Scholar
  94. Koumarianou E, Mikolajczak R, Pawlak D et al (2009) Comparative study on DOTA-derivatized bombesin analog labeled with 90Y and 177Lu: in vitro and in vivo evaluation. Nucl Med Biol 36:591–603PubMedGoogle Scholar
  95. Kowalski J, Henze M, Schumacher J et al (2003) Evalution of positron emission tomography imaging using [68Ga]-DOTA-D-Phe(1)-Tyr(3)-Octreotide in comparison to [111In]-DTPAOC SPECT. First resuls in patients with neuroendocrine tumor. Mol Imaging Biol 5:42–48PubMedGoogle Scholar
  96. Krenning EP, Kwekkeboom DJ, Bakker WH et al (1993) Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1,000 patients. Eur J Nucl Med 20:716–731PubMedGoogle Scholar
  97. Krenning EP, Kwekkeboom DJ, Valkema R et al (2004) Peptide receptor radionuclide therapy. Ann N Y Acad Sci 1014:234–245PubMedGoogle Scholar
  98. Kroog GS, Jensen RT, Battey JF (1995) Mammalian bombesin receptors. Med Res Rev 15:389–417PubMedGoogle Scholar
  99. Kung MP, Kung HF (2005) Mass effect of injected dose in small rodent imaging by SPECT and PET. Nucl Med Biol 32:673–678PubMedGoogle Scholar
  100. Kunstler JU, Veerendra B, Figueroa SD et al (2007) Organometallic 99mTc(III) ‘4 + 1’ bombesin(7–14) conjugates: synthesis, radiolabeling, and in vitro/in vivo studies. Bioconjug Chem 18:1651–1661PubMedGoogle Scholar
  101. Kwekkeboom D, Krenning EP, de Jong M (2000) Peptide receptor imaging and therapy. J Nucl Med 41:1704–1713PubMedGoogle Scholar
  102. La Bella R, Garcia-Garayoa E, Langer M et al (2002) In vitro and in vivo evaluation of a 99 mTc(I)-labeled bombesin analog for imaging of gastrin releasing peptide receptor-positive tumors. Nucl Med Biol 29:553–560PubMedGoogle Scholar
  103. Ladenheim EE, Taylor JE, Coy DH et al (1994) Blockade of feeding inhibition by neuromedin B using a selective receptor antagonist. Eur J Pharmacol 271:R7–R9PubMedGoogle Scholar
  104. Lambrecht RM, Sajjad M (1988) Accelarator-derived radionuclide generators. Radiochim Acta 43:171–179Google Scholar
  105. Lane SR, Veerendra B, Rold TL et al (2008) 99mTc(CO)3-DTMA bombesin conjugates having high affinity for the GRP receptor. Nucl Med Biol 35:263–272PubMedGoogle Scholar
  106. Lantry LE, Cappelletti E, Maddalena ME et al (2006) 177Lu-AMBA: Synthesis and characterization of a selective 177Lu-labeled GRP-R agonist for systemic radiotherapy of prostate cancer. J Nucl Med 47:1144–1152PubMedGoogle Scholar
  107. Laskin JJ, Sandler AB (2004) Epidermal growth factor receptor: a promising target insolid tumors. Cancer Treat Rev 30:1–17PubMedGoogle Scholar
  108. Lebacq-Verheyden AM, Trepel J, Sausville EA et al (1990) Bombesin and gastrin-releasing peptide: neuropeptides, secretagogues, and growth factors. In: Sporn MB, Roberts AB (eds) Peptide growth factors and their receptors II. Springer, New York, pp 71–124Google Scholar
  109. Lewis MR, Raubitschek A, Shively JE (1994) A facile, water soluble method for modification of proteins with DOTA. Use of elevated temperature and optimized pH to achieve high specific activity and high chelate stability in radiolabeled immunoconjugates. Bioconjug Chem 5:565–576PubMedGoogle Scholar
  110. Li WP, Lewis JS, Kim J et al (2002) DOTA-D-Tyr1-octreotate: a somatostatin analog for labeling with metal and halogen radionuclides for cancer imaging and therapy. Bioconjug Chem 13:721–728PubMedGoogle Scholar
  111. Li ZB, Wu Z, Chen K et al (2008) 18F-labeled BBN-RGD heterodimer for prostate cancer imaging. J Nucl Med 49:453–461PubMedGoogle Scholar
  112. Liehr RM, Reidelberger RD, Rosewicz S et al (1992) Dose-related involvement of CCK in bombesin-induced pancreatic growth. Regul Pept 38:207–219PubMedGoogle Scholar
  113. Lin TM, Warrick MW (1974) Action of acetylsalicyclic acid and glucagon on aicd secretion mucosal blood flow, bleeding, and net ionic effux in the fundic pouch of pentagastrin stimulated dogs. Arch Int Pharmacol Ther 210:279–287Google Scholar
  114. Lin KS, Luu A, Baidoo KE et al (2005) A new high affinity technetium-99 m-bombesin analog with low abdominal accumulation. Bioconjug Chem 16:43–50PubMedGoogle Scholar
  115. Liu S, Edwards DS (2001a) Synthesis and characterization of two (111)-In-labeled DTPA-peptide conjugates. Bioconjug Chem 12:630–634PubMedGoogle Scholar
  116. Liu S, Edwards DS (2001b) Bifunctional chelators for therapeutic lanthanide radiopharmaceuticals. Bioconjug Chem 12:7–34PubMedGoogle Scholar
  117. Liu Z, Niu G, Wang F et al (2009a) (68)Ga-labeled NOTARGD- BBN peptide for dual integrin and GRPR-targeted tumor imaging. Eur J Nucl Med Mol Imaging 36:1483–1494PubMedGoogle Scholar
  118. Liu Z, Yan Y, Chin FT et al (2009b) Dual integrin and gastrin releasing peptide receptor targeted tumor imaging using 18F-labeled PEGylated RGD-bombesin heterodimer 18F-FBPEG3- Glu-RGD-BBN. J Med Chem 52:425–432PubMedGoogle Scholar
  119. Liu Z, Li ZB, Cao Q et al (2009c) Small animal PET of tumors with (64)Cu-labeled RGD-bombesin heterodimer. J Nucl Med 50:1168–1177PubMedGoogle Scholar
  120. Llinares M, Devin C, Chaloin O et al (1999) Syntheses and biological activities of potent bombesin receptor antagonists. J Pept Res 53:275–283PubMedGoogle Scholar
  121. Lundqvist H, Tolmchev V (2002) Targeting peptides and positron emission tomography. Bioploymers 66:381–392Google Scholar
  122. Luyt LG, Katzenellenbogen JA (2002) A trithiolate tripodal bifunctional ligan for the radiolabeling of peptides with gallium (III). Bioconjug Chem 13:1140–1145PubMedGoogle Scholar
  123. Ma L, Yu P, Veerendra B et al (2007) In vitro and in vivo evaluation of Alexa Fluor 680- bombesin [7–14]NH2 peptide conjugate, a high-affinity fluorescent probe with high selectivity for the gastrin-releasing peptide receptor. Mol Imaging 6:171–180PubMedGoogle Scholar
  124. Maecke HR, Hofmann M, Haberkorn U (2005) 68Ga-labeled peptide in tumor imaging. J Nucl Med 46:172S–178SPubMedGoogle Scholar
  125. Maes V, Brans L, Schweinsberg C et al (2009) Carbohydrated [99mTc(CO)3](NalphaHis)Ac-bombesin(7–14) analogs. Adv Exp Med Biol 611:409–410PubMedGoogle Scholar
  126. Maina T, Nock B, Mather S (2006) Targeting prostate cancer with radiolabeled bombesins. Cancer Imaging 6:153–157PubMedGoogle Scholar
  127. Mansi R, Wang X, Forrer F et al (2009) Evaluation of a therapeutic radionuclides tomography, positron emission tomography, and labeling with single-photon emission computed conjugated bombesin-based radioantagonist for the 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid. Clin Cancer Res 15:5240–5249PubMedGoogle Scholar
  128. Mantey SA, Weber HC, Sainz E et al (1997) Discovery of a high affinity radioligand for the human orphan receptor, bombesin receptor subtype 3, which demonstrates that it has a unique pharmacology compared with other mammalian bombesin receptors. J Biol Chem 272:26062–26071PubMedGoogle Scholar
  129. Markwalder R, Reubi JC (1999) Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation. Cancer Res 59:1152–1159PubMedGoogle Scholar
  130. Mathias CJ, Sun YZ, Welch MJ et al (1990) N,N’-bis(2-hydroxybenzyl)-1-(4-bromoacetamidobenzyl)-1,2-ethylenediamine-N,N’-diacetic acid: a new bifunctional chelates for radiolabeling antibodies. Bioconjug Chem 1:204–211PubMedGoogle Scholar
  131. Matsumoto K, Yamada K, Wada E et al (2003) Bombesin receptor subtype-3 modulates plasma insulin concentration. Peptides 24:83–90PubMedGoogle Scholar
  132. McDevitt MR, Ma D, Lai LT et al (2001) Tumor theraphy with targeted atomic nanogenerators. Science 294:1537–1540PubMedGoogle Scholar
  133. McDonald TJ, Jornvall H, Nilsson G et al (1979) Characterization of a gastrin releasing peptide from porcine non-antral gastric tissue. Biochem Biophys Res Commun 90:227–233PubMedGoogle Scholar
  134. Metz DC, Jensen RT (2008) Gastrointestinal neuroendocrine tumors: pancreatic endocrine tumors. Gastroenterology 135:1469–1492PubMedGoogle Scholar
  135. Meyer GJ, Gielow P, Borner AR et al (2005) Ga-67 and Ga-68 labeled DOTA-derivatised peptide-ligands. Nuklearmedizin 6:A192Google Scholar
  136. Minamino N, Kangawa K, Matsuo H (1983) Neuromedin B: a novel bombesin-like peptide identified in porcine spinal cord. Biochem Biophys Res Commun 114:541–548PubMedGoogle Scholar
  137. Minamino N, Kangawa K, Matsuo H (1984) Neuromedin C: a bombesinlike peptide identified in porcine spinal cord. Biochem Biophys Res Commun 119:14–20PubMedGoogle Scholar
  138. Mollet A, Meier S, Grabler V et al (2003) Endogenous amylin contributes to the anorectic effects of cholecystokinin and bombesin. Peptides 24:91–98PubMedGoogle Scholar
  139. Montet X, Weissleder R, Josephson L (2006) Imaging pancreatic cancer with a peptide nanoparticle conjugate targeted to normal pancreas. Bioconjug Chem 17:905–911PubMedGoogle Scholar
  140. Moody TW, Crawley JN, Jensen RT (1982) Pharmacology and neurochemistry of bombesin-like peptides. Peptides 3:559–563PubMedGoogle Scholar
  141. Moody TW, Chan D, Fahrenkrug J et al (2003) Neuropeptides as autocrine growth factors in cancer cells. Curr Pharm Des 9:495–509PubMedGoogle Scholar
  142. Moody TW, Mantey SA, Pradhan TK et al (2004) Development of high affinity camptothecin-bombesin conjugates that have targeted cytotoxicity for bombesin receptor containing tumor cells. J Biol Chem 279:23580–23589PubMedGoogle Scholar
  143. Moore JG (1973) Gastric acid suppression by inravenous glucose solutions. Gastroenterology 64:1106–1110PubMedGoogle Scholar
  144. Moran TH, Moody W, Hostetler AM et al (1988) Distribution of bombesin binding sites in the rat gastrointestinal tract. Peptides 9:643–649PubMedGoogle Scholar
  145. Mutic S, Malyapa RS, Grigsby PW et al (2003) PET-guided IMRT for cervical carcinoma with positive para-aortic lymph nodes-a-dose-escaltion treatment planning study. Int J Radiat Oncol Biol Phys 55:28–35PubMedGoogle Scholar
  146. Nagalla SR, Gibson BW, Tang D et al (1992) Gastrinreleasing peptide (GRP) is not mammalian bombesin. Identification and molecular cloning of a true amphibian GRP distinct from amphibian bombesin in Bombina orientalis. J Biol Chem 267:6916–6922PubMedGoogle Scholar
  147. Nanda PK, Lane SR, Retzloff LB et al (2010) Radiolabeled regulatory peptides for imaging and therapy. Curr Opin Endocrinol Diabetes Obes 17:69–76PubMedGoogle Scholar
  148. Narayan S, Guo YS, Townsend CM et al (1990) Specific binding and growth effects of bombesin-related peptides on mouse colon cancer cells in vito. Cancer Res 50:6772–6778PubMedGoogle Scholar
  149. Nemeroff CB, Osbahr AJ, Manberg PJ et al (1979) Alteration in nociception and body temperature after intracisternal administration of neurotensin, β-endorphin, other endogenous peptides, and morohine. Proc Natl Acad Sci USA 76:5368–5371PubMedGoogle Scholar
  150. Nock B, Nikolopoulou A, Chiotellis E et al (2003) A novel potent bombesin analog for GRP receptor-targeted tumor imaging. Eur J Nucl Med Mol Imaging 30:247–258PubMedGoogle Scholar
  151. Nock BA, Nikolopoulou A, Galanis A et al (2005) Potent bombesin-like peptides for GRP-receptor targeting of tumors with 99mTc: a preclinical study. J Med Chem 48:100–110PubMedGoogle Scholar
  152. Okarvi SM (1999) Recent developments in 99mTc-labeled peptide-based radiopharmaceuticals: an overview. Nucl Med Commun 20:1093–1112PubMedGoogle Scholar
  153. Okarvi SM (2004) Peptide-based radiopharmaceuticals: future tools for diagnostic imaging of cancers and other diseases. Med Res Rev 24:357–397PubMedGoogle Scholar
  154. Okarvi SM (2008) Peptide-based radiopharmaceuticals and cytotoxic conjugates: potential tools against cancer. Cancer Treat Rev 34:13–26PubMedGoogle Scholar
  155. Okarvi SM, Al-Jammaz I (2003) Synthesis, radiolabeling and biological characteristics of a bombesin peptide analog as a tumor imaging agent. Anticancer Res 23:2745–2750PubMedGoogle Scholar
  156. Osumi Y, Aibara S, Sakae K et al (1977) Central noradrenergic inhibition of gastric mucosal blood flow and acid secretion in rats. Life Sci 20:1407–1416PubMedGoogle Scholar
  157. Parry JJ, Andrews R, Rogers BE (2007) MicroPET imaging of breast cancer using radiolabeled bombesin analogs targeting the gastrin-releasing peptide receptor. Breast Cancer Res Treat 101:175–183PubMedGoogle Scholar
  158. Paterson BM, Karas JA, Scanlon DB et al (2010) Synthesis, conjugation to bombesin (7–14)-NH2, and copper-64 radiolabeling. Inorg Chem 49:1884–1893PubMedGoogle Scholar
  159. Pazos-Moura CC, Ortiga-Carvalho TM, Gaspar De Moura E (2003) The autocrine/paracrine regulation of thyrotropin secretion. Thyroid 13:167–175PubMedGoogle Scholar
  160. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539Google Scholar
  161. Pochon S, Buchegger F, Pelegrin A et al (1989) A novel derivative of the chelon desferrioxamine for site-specific conjugation to antibodies. Int J Cancer 43:1188–1194PubMedGoogle Scholar
  162. Pradhan TK, Katsuno T, Taylor JE et al (1998) Identification of a unique ligand which has high affinity for all four bombesin receptor subtypes. Eur J Pharmacol 343:275–287PubMedGoogle Scholar
  163. Prasanphanich AF, Nanda PK, Rold TL et al (2007) [64Cu-NOTA-8-Aoc-BBN(7–14)NH2] targeting vector for positron-emission tomography imaging of gastrin-releasing peptide receptor-expressing tissues. Proc Natl Acad Sci USA 104:12462–12467PubMedGoogle Scholar
  164. Preston SR, Miller GV, Primrose JN (1996) Bombesin-like peptides and cancer. Crit Rev Oncol Hematol 23:225–238PubMedGoogle Scholar
  165. Reichert DE, Lewis JS, Andreson CJ (1999) Metal complexes as diagnostic tools. Coord Chem Rev 184:3–66Google Scholar
  166. Retzloff LB, Heinzke L, Figureoa SD et al (2010) Evaluation of [99mTc-(CO)3-X-Y-bombesin(7–14)NH2] conjugates for targeting gastrin-releasing peptide receptors overexpressed on breast carcinoma. Anticancer Res 30:19–30PubMedGoogle Scholar
  167. Reubi JC (1995) Neuropeptide receptors in health and disease: the molecular basis for in vivo imaging. J Nucl Med 36:1825–1835PubMedGoogle Scholar
  168. Reubi JC (2003) Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 24:389–427PubMedGoogle Scholar
  169. Reubi JC, Maecke HR (2008) Peptide-based probes for cancer imaging. J Nucl Med 49:1735–1738PubMedGoogle Scholar
  170. Reubi JC, Wenger S, Schmuckli-Maurer J et al (2002) Bombesin receptor subtypes in human cancers: detection with the universal radioligand P 125PI-[DTy6, beta-AlaP11P, PheP 13 P, NleP14] bombesin(6–14). Clin Cancer Res 8:1139–1146PubMedGoogle Scholar
  171. Reubi JC, Macke HR, Krenning EP (2005) Candidtae for peptide receptor radiotheraphy today and in the future. J Nucl Med 46:67S–75SPubMedGoogle Scholar
  172. Rogers BE, Rosenfeld ME, Khazaeli MB et al (1997) Localization of iodine-125-mIP-Des-Met14-bombesin (7–13)NH2 in ovarian carcinoma induced to express the gastrin releasing peptide receptor by adenoviral vector-mediated gene transfer. J Nucl Med 38:1221–1229PubMedGoogle Scholar
  173. Rogers BE, Manna DD, Safavy A (2004) In vitro and in vivo evaluation of a 64Cu-labeled polyethylene glycol-bombesin conjugate. Cancer Biother Radiopharm 19:25–34PubMedGoogle Scholar
  174. Rozengurt E (1990) Bombesin stimulation of mitogenesis. Specific receptors, signal transduction and early events. Am Rev Respir Dis 142:S11–S15PubMedGoogle Scholar
  175. Rozengurt E (1991) Neuropeptides as cellular growth factors: role of multiple signalling pathways. Eur J Clin Invest 21:123–134PubMedGoogle Scholar
  176. Ryan RR, Weber HC, Hou W et al (1998) Ability of various bombesin receptor agonists and antagonists to alter intracellular signaling of the human orphan receptor BRS-3. J Biol Chem 273:13613–13624PubMedGoogle Scholar
  177. Sancho V, Di Florio A, Terry W et al (2011) Bombesin receptor-mediated imaging and cytotoxicity: review and current status. Curr Drug Delivery 8:79–134Google Scholar
  178. Santos-Cuevas CL, Ferro-Flores G, Arteaga de Murphy C et al (2008) Targeted imaging of gastrin-releasing peptide receptors with 99mTc-EDDA/HYNIC-[Lys3]-bombesin: biokinetics and dosimetry in women. Nucl Med Commun 29:741–747PubMedGoogle Scholar
  179. Santos-Cuevas CL, Ferro-Flores G, Arteaga de Murphy C et al (2009) Design, preparation, in vitro and in vivo evaluation of (99m)Tc-N2S2-Tat(49–57)-bombesin: a target-specific hybrid radiopharmaceutical. Int J Pharm 375:75–83PubMedGoogle Scholar
  180. Schroeder RP, Muller C, Reneman S et al (2010) A standardized study to compare prostate cancer targeting efficacy of five radiolabeled bombesin analogs. Eur J Nucl Med Mol Imaging 37:1386–1396PubMedGoogle Scholar
  181. Schroeder RPJ, van Weerden WM, Krenning EP et al (2011) Gastrin-releasing peptide receptor-based targeting using bombesin analogs is superior to metabolism-based targeting using choline for in vivo imaging of human prostate cancer xenografts. Eur J Nucl Med Mol Imaging 38:1257–1266PubMedGoogle Scholar
  182. Schuhmacher J, Zhang H, Doll J et al (2005) GRP receptor-targeted PET of a rat pancreas carcinoma xenograft in nude mice with a 68Ga-labeled bombesin(6–14) analog. J Nucl Med 46:691–699PubMedGoogle Scholar
  183. Schuhmaker J, Atys R, Hauser H et al (1986) Labeling of monoclonal antibodies with a 67 Ga phenolic aminocarboxylic acid chelate. Part I. Chemistry and labeling technique. Eur J Nucl Med 12:397–404Google Scholar
  184. Schweinsberg C, Maes V, Brans L et al (2008) Novel glycated [99mTc(CO)3]-labeled bombesin analogs for improved targeting of gastrin-releasing peptide receptor-positive tumors. Bioconjug Chem 19:2432–2439PubMedGoogle Scholar
  185. Scopinaro F, Varvarigou AD, Ussof W et al (2002) Technetium labeled bombesin-like peptide: preliminary report on breast cancer uptake in patients. Cancer Biother Radiopharm 17:327–335PubMedGoogle Scholar
  186. Scopinaro F, De Vincentis G, Corazziari E et al (2004) Detection of colon cancer with 99mTc-labeled bombesin derivative (99mTc-leu13-BN1). Cancer Biother Radiopharm 19:245–252PubMedGoogle Scholar
  187. Scopinaro F, Massari R, Varvarigou AD et al (2007) High resolution small animal single photon emission computed tomography: uptake of [99mTc]bombesin and [123I]ioflupane by rat brain. Q J Nucl Med Mol Imaging 51:204–210PubMedGoogle Scholar
  188. Severi C, Coy DH, Jensen RT et al (1989) Pharmacological characterization of [13 Leu13ψ-CH2NH-Leu14]-bombesin as a specific bombesin receptor antagonist on isolated smooth muscle cells. J Pharmacol Exp Ther 251:713–717PubMedGoogle Scholar
  189. Seybold VS, Parsons AM, Aanonsen LM et al (1990) Characterization and autoradiographic localization of gastrin releasing peptide receptors in the porcine gut. Peptides 11:779–787PubMedGoogle Scholar
  190. Shipp MA, Tarr GE, Chen CY et al (1991) CD10/neutral endopeptidase 24.11 hydrolyzes bombesin-like peptides and regulates the growth of small cell carcinomas of the lung. Proc Natl Acad Sci USA 88:10662–10666PubMedGoogle Scholar
  191. Signore A, Annovazzi A, Chianelli M et al (2001) Peptide radiopharmaceuticals for diagnosis and therapy. Eur J Nucl Med 28:1555–1565PubMedGoogle Scholar
  192. Smith CJ, Gali H, Sieckman GL et al (2003a) Radiochemical investigations of 177Lu-DOTA-8-Aoc-BBN7- 14NH2: An in vitro/in vivo assessment of the targeting ability of this new radiopharmaceutical for PC-3 human prostate cancer cells. Nucl Med Biol 30:101–109PubMedGoogle Scholar
  193. Smith CJ, Gali H, Sieckman GL et al (2003b) Radiochemical investigations of 99 mTc-N3S-X-BBN7-14NH2: An in vitro/in vivo structure-activity relationship study where X) 0-,3-,5-,8-, and 11-carbon tethering moieties. Bioconjug Chem 14:93–102PubMedGoogle Scholar
  194. Smith CJ, Sieckman GL, Owen NK et al (2003c) T. J. Radio-Chemical investigations of gastrin-releasing peptide receptorspecific [(99m)Tc(X)(CO)3-Dpr-Ser-Ser–Ser-Gln-Trp-Ala-Val-Gly-His-Leu-Met-(NH2)] in PC-3, tumor-bearing, rodent models: syntheses, radiolabeling, and in vitro/in vivo studies where Dpr = 2,3-diaminopropionic acid and X = H2O or P(CH2OH)3. Cancer Res 63:4082–4088PubMedGoogle Scholar
  195. Smith CJ, Sieckman GL, Owen NK et al (2003d) Radiochemical investigation of [188Re(H2O)(CO)3-diaminoproprionic acid-SSS-bombesin(7–14)NH2]: synthesis, radiolabeling and in vitro/in vivo GRP receptor targeting studies. Anticancer Res 23:63–70PubMedGoogle Scholar
  196. Smith CJ, Volkert WA, Hoffman TJ (2003e) Gastrin releasing peptide (GRP) receptor targeted radiopharmaceuticals: a concise update. Nucl Med Biol 30:861–868PubMedGoogle Scholar
  197. Smith CJ, Volkert WA, Hoffman TJ (2005) Radiolabeled peptide conjugates for targeting of the bombesin receptor superfamily subtypes. Nucl Med Biol 32:733–740PubMedGoogle Scholar
  198. Spindel E (1986) Mammalian bombesin-like peptides. Trends Neurosci 9:130–133Google Scholar
  199. Stimmel JB, Stockstill ME, Kull FC et al (1995) Yttrium-90 chelation properties of tetrazatetraacetic acid macrocycles, diethylenetriaminepentaacetic acid analogs, and a novel terpyridine acyclic chelator. Bioconjug Chem 6:219–225PubMedGoogle Scholar
  200. Sunday ME, Kaplan LM, Motoyama E et al (1988) Gastrin-releasing peptide (mammalian bombesin) gene expression in health and disease. Lab Invest 59:5–24PubMedGoogle Scholar
  201. Swope SL, Schonbrunn A (1988) The biphasic stimulation of insulin secretion by bombesin involves both cytosolic free calcium and protein kinase C. Biochem J 253:193–201PubMedGoogle Scholar
  202. Tachf Y, Vale W, Rivier J et al (1980) Brain regulation of gastric secretion: influence of neuropeptides (bombesin/8-endorphin/central nervous system/gastric acid output). Proc Natl Acad Sci USA 77:5515–5519Google Scholar
  203. Thomas R, Chen J, Roudier MM et al (2009) Vessella RL, Lantry LE, Nunn AD. In vitro binding evaluation of 177Lu-AMBA, a novel 177Lu-labeled GRP-R agonist for systemic radiotherapy in human tissues. Clin Exp Metastasis 26:105–119PubMedGoogle Scholar
  204. Tofilon PJ, Saxman S, Coleman CN (2003) Molecular targets for radion theraphy: bringing preclinical data into clinical trials. Clin Cancer Res 9:3518–3520PubMedGoogle Scholar
  205. Tweedle MF (2009) Peptide-targeted diagnostics and radiotherapeutics. Acc Chem Res 42:958–968PubMedGoogle Scholar
  206. Upp JR, Poston GJ, Maclellan DG et al (1988) Mechanisms of the trophic actions of bombesin on the pancreas. Pancreas 3:193–198PubMedGoogle Scholar
  207. Uppal JK, Hazari PP, Varshney R et al (2011) Design, synthesis and biological evaluation of choline based SPECT imaging agent: Ga(III)-DO3A-EA-choline. Org Bio Chem 9(1591):1599Google Scholar
  208. Van de Wiele C, Dumont F, Vanden Broecke R et al (2000) Technetium-99 m RP527, a GRP analog for visualisation of GRP receptor-expressing malignancies: a feasibility study. Eur J Nucl Med 27:1694–1699PubMedGoogle Scholar
  209. Van de Wiele C, Dumont F, Van Belle S et al (2001) Is there a role for agonist gastrin-releasing peptide-receptor radioligands in tumor imaging? Nucl Med Commun 22:5–15PubMedGoogle Scholar
  210. Van de Wiele C, Phonteyne P, Pauwels P et al (2008) Gastrin-releasing peptide receptor imaging in human breast carcinoma versus immunohistochemistry. J Nucl Med 49:260–264PubMedGoogle Scholar
  211. van de WC, Dumont F, Dierck RA et al (2001) Biodistribution and dosimetry of (99 m)Tc-RP527, a gastrin-releasing peptide (GRP) agonist for the visualization of GRP receptor-expressing malignancies. J Nucl Med 42:1722–1727Google Scholar
  212. Van Essen M, Krenning EP, Kam BL et al (2009) Peptide-receptor radionuclide therapy for endocrine tumors. Nat Rev Endocrinol 5:382–393PubMedGoogle Scholar
  213. Van Lommel A (2001) Pulmonary neuroendocrine cells (PNEC) and neuroepithelial bodies (NEB): chemoreceptors and regulators of lung development. Paediatr Respir Rev 2:171–176PubMedGoogle Scholar
  214. Varshney R, Hazari PP, Uppal JK et al (2011) Solid phase synthesis, radiolabeling and biological evaluation of a 99mTc-labeled αVβ3 tripeptide (RGD) conjugated to DOTA as a tumor imaging agent. Cancer Bio Therapy 11:1–9Google Scholar
  215. Varvarigou AD, Scopinaro F, Leondiadis L et al (2002) Synthesis, chemical, radio-chemical and radiobiological evaluation of a new 99 mTc-labeled bombesin-like peptide. Cancer Biother Radiopharm 17:317–326PubMedGoogle Scholar
  216. Varvarigou A, Bouziotis P, Zikos C et al (2004) Gastrin-releasing peptide (GRP) analog for cancer imaging. Cancer Biother Radiopharm 19:219–229PubMedGoogle Scholar
  217. Velikyan I (2005) Syntesis, characterization and application of 68Ga-labeled macromolecules. Digital comprehensive summaries of Uppsala dissertations from the Faculty of Science and Technology 73:1651–6214Google Scholar
  218. Velikyan I, Sundberg AL, Lindhe O et al (2005) Preparation and evaluation of 68Ga-DOTA-hEGF for visualization of EGFR expression in malignant tumors. J Nucl Med 46:1881–1888PubMedGoogle Scholar
  219. Vigna SR, Giraud AS, Mantyh PS et al (1990) Characterization of bombesin receptors on canine antral gastrin cells. Peptides 11:259–264PubMedGoogle Scholar
  220. Volkert WA, Hoffman TJ (1999) Therapeutic radiopharmaceuticals. Chem Rev 99:2269–2292PubMedGoogle Scholar
  221. Von Schrenck T, Heinz-Erian P, Moran T et al (1989) Neuromedin B receptor in esophagus: evidence for subtypes of bombesin receptors. Am J Physiol 256:747–758Google Scholar
  222. Wagner SJ, Welch MJ (1979) Gallium-68 labeling of albumin and albumin microspheres. J Nucl Med 20:428–433PubMedGoogle Scholar
  223. Waser B, Eltschinger V, Linder K et al (2007) Selective in vitro targeting of GRP and NMB receptors in human tumors with the new bombesin tracer 177Lu-AMBA. Eur J Nucl Med Mol Imaging 34:95–100PubMedGoogle Scholar
  224. Weiner RE, Thakur ML (2002) Radiolabeled peptides in the diagnosis and therapy of oncological diseases. Appl Radiat Isot 57:749–763PubMedGoogle Scholar
  225. Whitley JC, Moore C, Giraud AS et al (1999) Molecular cloning, genomic organization and selective expression of bombesin receptor subtype 3 in the sheep hypothalamus and pituitary. J Mol Endocrinol 23:107–116PubMedGoogle Scholar
  226. Wild D, Macke HR, Waser B et al (2005) 68Ga-DOTANOC: a first compound for PET imaging with high affinity for somatostain receptor subtype 2 and 5. Eur J Nucl Med Mol Imaging 32:724PubMedGoogle Scholar
  227. Yamaguchi I, Hiroi J, Kumada S (1977) Central and peripheral adrenergic mechanisms regulating gastric secretion in the rat. J Pharmacol Exp Ther 203:125–131PubMedGoogle Scholar
  228. Yang YS, Zhang X, Xiong Z et al (2006) Comparative in vitro and in vivo evaluation of two 64Cu labeled bombesin analogs in a mouse model of human prostate adenocarcinoma. Nucl Med Biol 33:371–380PubMedGoogle Scholar
  229. Yegen BC (2003) Bombesin-like peptides: candidates as diagnostic and therapeutic tools. Curr Pharm Des 9:1013–1022PubMedGoogle Scholar
  230. Yoo J, Reichert DE, Welch MJ (2004) Comparative in vivo behaviour studies of cycle bases copper -64 complexes:regioselective synthesis, X-ray structure, radiochemistry, log P and biodistribution. J Med Chem 47:6625–6637PubMedGoogle Scholar
  231. Zhang H, Chen J, Waldherr C et al (2004) Synthesis and evaluation of bombesin derivatives on the basis of pan-bombesin peptides labeled with indium-111, lutetium-177, and yttrium-90 for targeting bombesin receptor-expressing tumors. Cancer Res 64:6707–6715PubMedGoogle Scholar
  232. Zhang X, Cai W, Cao F et al (2006) 18F-labeled bombesin analogs for targeting GRP receptor-expressing prostate cancer. J Nucl Med 47:492–501PubMedGoogle Scholar
  233. Zhang HW, Schuhmacher J, Waser B et al (2007) DOTA-PESIN, a DOTA-conjugated bombesin derivative designed for the imaging and targeted radionuclide treatment of bombesin receptor-positive tumors. Eur J Nucl Med Mol Imaging 34:1198–1208PubMedGoogle Scholar
  234. Zhou J, Chen J, Mokotoff M et al (2004) Targeting gastrinreleasing peptide receptors for cancer treatment. Anticancer Drugs 15:921–927PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Raunak Varshney
    • 1
  • Puja P. Hazari
    • 1
  • P. Fernandez
    • 2
  • J. Schulz
    • 2
  • M. Allard
    • 2
  • Anil  K. Mishra
    • 1
  1. 1.DCRSINMAS, DRDODelhiIndia
  2. 2.University of Bordeaux, CNRS, INCIATalenceFrance

Personalised recommendations