Radiobiology

  • Murat Beyzadeoglu
  • Gokhan Ozyigit
  • Ugur Selek
  • Ugur Selek
Chapter

Abstract

This book, arranged in an MCQ format complemented by oral exam questions, is designed to meet the needs of a wide range of examinees. Essential aspects of radiation physics, radiobiology, and clinical radiation oncology are well covered. Tumors at different sites are addressed in a series of individual chapters, and further chapters are devoted to lymphomas and total body irradiation, pediatric tumors, and rare tumors and benign diseases. The answer keys provide clear explanations for both the correct answers and incorrect statements.

Keywords

Linear Energy Transfer Normal Tissue Complication Probability Tumor Control Probability Target Theory Equivalent Uniform Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    de Pouplana LR (ed) (2005) The genetic code and the origin of life. Springer, Berlin, pp 75–91Google Scholar
  2. 2.
    Thomas DP, William CE (2007) Cell biology. Saunders, Philadelphia, pp 20–47Google Scholar
  3. 3.
    Sobti RC, Obe G (eds) (2002) Some aspects of chromosome structure and function. Springer, New York, pp 112–115Google Scholar
  4. 4.
    Moeller SJ, Sheaff RJ (2006) G1 Phase: components, conundrums, context. In: Kaldis P (ed) Cell cycle regulation. Springer, Berlin, pp 1–29CrossRefGoogle Scholar
  5. 5.
    Hartwell LH, Culotti J, Pringle JR et al (1974) Genetic control of the cell division cycle in yeast. Science 183:46PubMedCrossRefGoogle Scholar
  6. 6.
    Harper JW, Adams PD (2001) Cyclin-dependent kinases. Chem Rev 101:2511PubMedCrossRefGoogle Scholar
  7. 7.
    Zinkel SS, Korsmeyer SJ (2005) Apoptosis. In: DeVita VT, Hellman S, Rosenberg SA (eds) Cancer: principles & practice of oncology, 7th edn. Lippincott Williams & Wilkins, Philadelphia, pp 95–98Google Scholar
  8. 8.
    Jékely G (ed) (2007) Eukaryotic membranes and cytoskeleton. Springer, New York, pp 35–40Google Scholar
  9. 9.
    Rudolph KL (2007) Telomere shortening induces cell intrinsic checkpoints and environmental alterations limiting adult stem cell function. In: Gutierrez LG, Ju Z (eds) Telomeres and telomerase in ageing, disease, and cancer, Part II. Springer, Berlin/Heidelberg, pp 161–180Google Scholar
  10. 10.
    Bignold LP, Coghlan BL, Jersmann HP (2006) Cancer morphology, carcinogenesis and genetic instability: a background. In: Bignold LP (ed) Cancer: cell structures, carcinogens and genomic instability. Springer, Basel, pp 1–25CrossRefGoogle Scholar
  11. 11.
    Bodansky D (2007) Effects of radiation exposures. In: Bodansky D (ed) Nuclear energy. Springer, New York, pp 85–121Google Scholar
  12. 12.
    Alexander K, Dietrich B (eds) (2005) Radiological protection. Springer, Berlin, pp 5–40Google Scholar
  13. 13.
    Hall EJ (2000) Radiobiology for the radiologist. Lippincott Williams & Wilkins, Philadelphia, 558ppGoogle Scholar
  14. 14.
    Lewanski CR, Gullick WJ (2001) Radiotherapy and cellular signaling. Lancet Oncol 2:366PubMedCrossRefGoogle Scholar
  15. 15.
    Podgorsak EB (2005) Radiation oncology physics: a handbook for teachers and students. International Atomic Energy Agency, Vienna, p 486Google Scholar
  16. 16.
    Saw CB, Celi JC, Saiful Huq M (2006) Therapeutic radiation physics primer. Hematol Oncol Clin North Am 20(1):25–43, ReviewPubMedCrossRefGoogle Scholar
  17. 17.
    Stabin MG (2008) Quantities and units in radiation protection. In: Stabin MG (ed) Radiation protection and dosimetry. Springer, New York, pp 67–74Google Scholar
  18. 18.
    Podgorsak EB (2005) Radiation oncology physics: a handbook for teachers and students. International Atomic Energy Agency, Vienna, p 556Google Scholar
  19. 19.
    Magill J, Galy J (2005) Radioactivity, radionuclides, radiation. Springer, Heidelberg, pp 117–123Google Scholar
  20. 20.
    Goitein M (2008) Radiation oncology: a physicist’s-eye view. Springer, New York, pp 5–6Google Scholar
  21. 21.
    Beck-Bornholdt HP (1993) Quantification of relative biological effectiveness, dose modification factor and therapeutic gain factor. Strahlenther Onkol 169(1):42–47PubMedGoogle Scholar
  22. 22.
    Magill J, Galy J (2005) Radioactivity radionuclides radiation. Springer, Heidelberg, pp 102–103Google Scholar
  23. 23.
    Katz R, Cucinotta FA (1999) Tracks to therapy. Radiat Meas 31(1–6):379–388, ReviewPubMedCrossRefGoogle Scholar
  24. 24.
    Blackstock W, Kevin M (2005) Radiotherapy and chemotherapy. In: Jeremic B (ed) Advances in radiation oncology in lung cancer. Springer, Berlin, p 158Google Scholar
  25. 25.
    Hobbie RK, Roth BJ (2007) Intermediate physics for medicine and biology. Springer, New York, p 463Google Scholar
  26. 26.
    Bond VP (1995) Dose, effect severity, and imparted energy in assessing biological effects. Stem Cells 13(Suppl 1):21–29, ReviewPubMedGoogle Scholar
  27. 27.
    Podgorsak EB (2005) Radiation oncology physics: a handbook for teachers and students. International Atomic Energy Agency, Vienna, p 492Google Scholar
  28. 28.
    Stabin MG (2008) Quantities and units in radiation protection. In: Stabin MG (ed) Radiation protection and dosimetry. Springer, New York, pp 100–102Google Scholar
  29. 29.
    Fowler JF (2006) Practical time-dose evaluations, or how to stop worrying and learn to love linear quadratics. In: Levitt SH, Purdy JA, Perez CA, Vijayakumar S (eds) Technical basis of radiation therapy, 4th rev edn. Springer, Berlin, pp 444–446Google Scholar
  30. 30.
    Strandqvist M (1944) Studien uber die cumulative Wirkung der Rontgenstrahlen bei Fraktionierung. Erfahrungen aus dem Radiumhemmet an 280 Haut und Lippenkarzinomen. Acta Radiol 55(Suppl):1–300Google Scholar
  31. 31.
    Thames HD Jr (1988) Early fractionation methods and the origins of the NSD concept. Acta Oncol 27(2):89–103, ReviewPubMedCrossRefGoogle Scholar
  32. 32.
    Ellis F (1969) Dose, time and fractionation: a clinical hypothesis. Clin Radiol 20:1–7PubMedCrossRefGoogle Scholar
  33. 33.
    Goitein M (2008) Radiation oncology: a physicist’s-eye view. Springer, New York, pp 3–4Google Scholar
  34. 34.
    Podgorsak EB (2005) Radiation oncology physics: a handbook for teachers and students. International Atomic Energy Agency, Vienna, pp 485–491Google Scholar
  35. 35.
    Garwood DL, Cho C, Choy H (2006) Clinical principles and applications of chemoirradiation. In: Levitt SH, Purdy JA, Perez CA, Vijayakumar S (eds) Technical basis of radiation therapy, 4th rev edn. Springer, Berlin, pp 40–41Google Scholar
  36. 36.
    Little JB, Hahn GM, Frindel E, Tubiana M (1973) Repair of potentially lethal radiation damage in vitro and in vivo. Radiology 106:689PubMedGoogle Scholar
  37. 37.
    Barendsen GW, Koot CJ, Van Kersen GR, Bewley DK, Field SB, Parnell CJ (1966) The effect of oxygen on impairment of the proliferative capacity of human cells in culture by ionizing radiations of different LET. Int J Radiat Biol Relat Stud Phys Chem Med 10(4):317–327PubMedCrossRefGoogle Scholar
  38. 38.
    Grdina DJ, Murley JS, Kataoka Y (2002) Radioprotectants: current status and new directions. Oncology 63(Suppl 2):2–10PubMedCrossRefGoogle Scholar
  39. 39.
    Thomas CT, Ammar A, Farrell JJ, Elsaleh H (2006) Radiation modifiers: treatment overview and future investigations. Hematol Oncol Clin North Am 20(1):119–139PubMedCrossRefGoogle Scholar
  40. 40.
    Bergonie J, Tribondeau L (1906) Interprétation de quelques résultats de la radiothérapie et essaide fixation d’une technique rationelle. C R Acad Sci 143:983–985Google Scholar
  41. 41.
    Michalowski AS (1992) Post-irradiation modification of normal-tissue injury: lessons from the clinic. BJR Suppl 24:183–186, ReviewPubMedGoogle Scholar
  42. 42.
    Ancel P, Vintemberger P (1925) C R Soc Biol 99:832. Comparison entre les effects des rayons X et ceux du vieillissement sui l’oeuf de poleGoogle Scholar
  43. 43.
    Rubin P, Casarett GW (1968) Clinical radiation pathology as applied to curative radiotherapy. Cancer 22(4):767–778PubMedCrossRefGoogle Scholar
  44. 44.
    Emami B, Lyman J, Brown A et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21(1):109–122PubMedCrossRefGoogle Scholar
  45. 45.
    Withers HR, Taylor JM, Maciejewski B (1988) Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys 14(4):751–759CrossRefGoogle Scholar
  46. 46.
    Awwad HK (2005) Normal tissue radiosensitivity: prediction on deterministic or stochastic basis? J Egypt Natl Canc Inst 17(4):221–230, ReviewPubMedGoogle Scholar
  47. 47.
    Willers H, Held KD (2006) Introduction to clinical radiation biology. Hematol Oncol Clin North Am 20(1):1–24, ReviewPubMedCrossRefGoogle Scholar
  48. 48.
    Kong FM, Pan C, Eisbruch A, Ten Haken RK (2007) Physical models and simpler dosimetric descriptors of radiation late toxicity. Semin Radiat Oncol 17(2):108–120, ReviewPubMedCrossRefGoogle Scholar
  49. 49.
    Baumann M, Petersen C, Krause M (2005) TCP and NTCP in preclinical and clinical research in Europe. Rays 30(2):121–126, ReviewPubMedGoogle Scholar
  50. 50.
    Baumann M, Petersen C (2005) TCP and NTCP: a basic introduction. Rays 30(2):99–104, ReviewPubMedGoogle Scholar
  51. 51.
    Lyman JT (1992) Normal tissue complication probabilities: variable dose per fraction. Int J Radiat Oncol Biol Phys 22(2):247–250PubMedCrossRefGoogle Scholar
  52. 52.
    Niemierko A (1997) Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys 24(1):103–110PubMedCrossRefGoogle Scholar
  53. 53.
    Coutard H (1937) The result and methods of treatment of cancer by radiation. Ann Surg 106(4):584–598PubMedCrossRefGoogle Scholar
  54. 54.
    Tubiana M, Dutreix J, Wambersie A (1990) Introduction to radiobiology. Taylor & Francis, London, 119-123–131-135Google Scholar
  55. 55.
    Baumann M, Dörr W, Petersen C et al (2003) Repopulation during fractionated radiotherapy: much has been learned, even more is open. Int J Radiat Biol 79(7):465–467PubMedCrossRefGoogle Scholar
  56. 56.
    Baumann M, Liertz C, Baisch H et al (1994) Impact of overall treatment time of fractionated irradiation on local control of human FaDu squamous cell carcinoma in nude mice. Radiother Oncol 32(2):137–143PubMedCrossRefGoogle Scholar
  57. 57.
    Willers H, Dahm-Daphi J, Powell SN (2004) Repair of radiation damage to DNA. Br J Cancer 90(7):1297–1301PubMedCrossRefGoogle Scholar
  58. 58.
    Trott KR (1982) Experimental results and clinical implications of the four R’s in fractionated radiotherapy. Radiat Environ Biophys 20(3):159–170, ReviewPubMedCrossRefGoogle Scholar
  59. 59.
    Popple RA, Ove R, Shen S (2002) Tumor control probability for selective boosting of hypoxic subvolumes, including the effect of reoxygenation. Int J Radiat Oncol Biol Phys 54:921–927PubMedCrossRefGoogle Scholar
  60. 60.
    Podgorsak EB (2005) Radiation oncology physics: a handbook for teachers and students. International Atomic Energy Agency, Vienna, pp 499–505Google Scholar
  61. 61.
    Lee CK (2006) Evolving role of radiation therapy for hematologic malignancies. Hematol Oncol Clin North Am 20(2):471–503, ReviewPubMedCrossRefGoogle Scholar
  62. 62.
    Thames HD, Ang KK (1998) Altered fractionation: radiobiological principles, clinical results, and potential for dose escalation. Cancer Treat Res 93:101–128PubMedCrossRefGoogle Scholar
  63. 63.
    ICRP (2006) Assessing dose of the representative person for the purpose of radiation protection of the public. ICRP publication 101. Approved by the Commission in September 2005. Ann ICRP 36(3):vii–viii, 5–62CrossRefGoogle Scholar
  64. 64.
    Prasad KN, Cole WC, Haase GM (2004) Radiation protection in humans: extending the concept of as low as reasonably achievable (ALARA) from dose to biological damage. Br J Radiol 77(914):97–99, ReviewPubMedCrossRefGoogle Scholar
  65. 65.
    Beyzadeoglu M, Ozyigit G, Ebruli C (2010) Basic radiation oncology, 1st edn. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Murat Beyzadeoglu
    • 1
  • Gokhan Ozyigit
    • 2
  • Ugur Selek
    • 3
  • Ugur Selek
    • 4
  1. 1.Department of RadiationGulhane Military Medical SchoolEtlik, AnkaraTurkey
  2. 2.Department of Radiation Oncology Faculty of MedicineHacettepe UniversitySihhiye, AnkaraTurkey
  3. 3.MD Anderson Cancer CenterUniversity of TexasIstanbulTurkey
  4. 4.MD Anderson Radiation OncologyCenter at American Hospital-Istanbul NisantasiIstanbulTurkey

Personalised recommendations