Landmark Recognition in VISITO Tuscany

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 247)


This paper discusses and compares various approach to automatic landmark recognition in pictures, based upon image content analysis and classification. The paper first compares various visual features and image similarity functions based on local features. Finally it discusses and compares a new classification technique to decide the landmark contained in an image that first classifies the local features of the image and then uses this result in order to take a final decision on the entire image. Experiments demonstrate this last approach is the most effective one. The discussed techniques were used and tested in the project VISITO Tuscany.

Categories and Subject Descriptors: H.3 [Information Storage and Retrieval]: H.3.3 Information Search and Retrieval;


Image classification Content Based Retrieval 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Search in Audiovisual using Peer-to-Peer Information Retrieval (SAPIR) FP6 European research project,
  3. 3.
    Amato, G., Falchi, F.: kNN based image classification relying on local feature similarity. In: SISAP 2010: Proceedings of the Third International Conference on SImilarity Search and Applications, pp. 101–108. ACM, New York (2010)CrossRefGoogle Scholar
  4. 4.
    Amato, G., Falchi, F.: Local feature based image similarity functions for kNN classfication. In: Proceedings of the 3rd International Conference on Agents and Artificial Intelligence (ICAART 2011), vol. 1, pp. 157–166. SciTePress (2011)Google Scholar
  5. 5.
    Amato, G., Falchi, F., Bolettieri, P.: Recognizing landmarks using automated classification techniques: an evaluation of various visual features. In: Proceeding of The Second Interantional Conference on Advances in Multimedia (MMEDIA 2010), pp. 78–83. IEEE Computer Society (2010)Google Scholar
  6. 6.
    Batko, M., Falchi, F., Novak, D., Perego, R., Rabitti, F., Sedmidubsky, J., Zezula, P.: Building a web-scale image similarity search system. In: Multimedia Tools and Applications (to appear)Google Scholar
  7. 7.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Burghouts, G.J., Geusebroek, J.M.: Performance evaluation of local colour invariants. Computer Vision and Image Understanding 113, 48–62 (2009)CrossRefGoogle Scholar
  9. 9.
    Dudani, S.: The distance-weighted k-nearest-neighbour rule. IEEE Transactions on Systems, Man and Cybernetics SMC-6(4), 325–327 (1975)CrossRefGoogle Scholar
  10. 10.
    Google. Goggles (2011),
  11. 11.
    ISO/IEC. Information technology - Multimedia content description interfaces (2003), 15938Google Scholar
  12. 12.
    ISO/IEC. Information technology - Multimedia content description interfaces. Part 6: Reference Software (2003), 15938-6:2003Google Scholar
  13. 13.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  14. 14.
    Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach. Advances in Database Systems, vol. 32. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  15. 15.
    Zheng, Y., Zhao, M., Song, Y., Adam, H., Buddemeier, U., Bissacco, A., Brucher, F., Chua, T.-S., Neven, H.: Tour the world: Building a web-scale landmark recognition engine. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009), pp. 1085–1092 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.ISTI-CNRPisaItaly

Personalised recommendations