Towards Artistic Collections Navigation Tools Based on Relevance Feedback

  • Daniele Borghesani
  • Costantino Grana
  • Rita Cucchiara
Part of the Communications in Computer and Information Science book series (CCIS, volume 247)

Abstract

Artistic image collections are usually managed via textual metadata into standard content management systems. More sophisticated searches can be performed using image retrieval technologies based on visual content. Nevertheless, the problem of the information presentation remains. In this paper we try to move beyond the classic grid-styled presentation model, suggesting a novel use of relevance feedback as a navigation tool. Relevance feedback is therefore used to warp the view and allow the user to spatially navigate the image collection, and at the same time focus on his retrieval aim. This is obtained exploiting a distance based space warping on the 2D projection of the distance matrix. Multitouch gestures are employed to provide feedbacks by natural interaction with the system.

Keywords

Relevance Feedback Visual Similarity Visual Content Image Collection Local Linear Embedding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grana, C., Borghesani, D., Cucchiara, R.: Surfing on artistic documents with visually assisted tagging. In: ACM Multimed., pp. 1343–1352 (2010)Google Scholar
  2. 2.
    Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  3. 3.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-Up Robust Features (SURF). Comput. Vis. Image Und. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  4. 4.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE T. Pattern Anal. 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  5. 5.
    Tuzel, O., Porikli, F., Meer, P.: Pedestrian Detection via Classification on Riemannian Manifolds. IEEE T. Pattern Anal. 30(10), 1713–1727 (2008)CrossRefGoogle Scholar
  6. 6.
    Oliva, A., Torralba, A.: Building the gist of a scene: The role of global image features in recognition. Visual Perception, Progress in Brain Research 155 (2006)Google Scholar
  7. 7.
    Heesch, D.: A survey of browsing models for content based image retrieval. Multimed. Tools Appl. 40, 261–284 (2008)CrossRefGoogle Scholar
  8. 8.
    Sammon, J.W.: A nonlinear mapping for data structure analysis. IEEE T. Comput. 18(5), 401–409 (1969)CrossRefGoogle Scholar
  9. 9.
    Walter, J.A.: H-mds: a new approach for interactive visualization with multidimensional scaling in the hyperbolic space. Inform. Syst. 29(4), 273–292 (2004)CrossRefGoogle Scholar
  10. 10.
    Tenenbaum, J.B., Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290(5500), 2319–2323 (2000)CrossRefGoogle Scholar
  11. 11.
    Hinton, G.E., Roweis, S.T.: Stochastic neighbor embedding. Neu. Inf. Pro. Syst., 833–840 (2002)Google Scholar
  12. 12.
    Roweis, S.T., Lawrence, K.: Nonlinear dimensionality reduction by locally linear embedding. Science, 2323–2326 (2000)Google Scholar
  13. 13.
    Faloutsos, C., Lin, K.I.: Fastmap: a fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets. In: ACM SIGMOD International Conference on Management of Data, pp. 163–174 (1995)Google Scholar
  14. 14.
    Grana, C., Borghesani, D., Cucchiara, R.: Automatic segmentation of digitalized historical manuscripts. Multimedia Tools and Applications, 1–24 (July 2010)Google Scholar
  15. 15.
    Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and trends of the new age. ACM Computer Surveys 40(2), 1–60 (2008)CrossRefGoogle Scholar
  16. 16.
    Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In: IEEE Symposium on Foundations of Computer Science, pp. 459–468 (2006)Google Scholar
  17. 17.
    Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE T. Pattern Anal. 33(1), 117–128 (2011)CrossRefGoogle Scholar
  18. 18.
    Chang, Y., Kamataki, K., Chen, T.: Mean shift feature space warping for relevance feedback. IEEE Image Proc., 1849–1852 (2009)Google Scholar
  19. 19.
    Seidenari, S., Pellacani, G., Grana, C.: Computer description of colours in dermoscopic melanocytic lesion images reproducing clinical assessment. British Journal of Dermatology 149(3), 523–529 (2003)CrossRefGoogle Scholar
  20. 20.
    Grana, C., Borghesani, D., Cucchiara, R.: Optimized block-based connected components labeling with decision trees. IEEE Transactions on Image Processing 19(6), 1596–1609 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Baraldi, S., Del Bimbo, A., Landucci, L., Torpei, N.: Natural interaction. In: Encyclopedia of Database Systems, pp. 1880–1885. Springer, US (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Daniele Borghesani
    • 1
  • Costantino Grana
    • 1
  • Rita Cucchiara
    • 1
  1. 1.Università degli Studi di Modena e Reggio EmiliaModenaItaly

Personalised recommendations