Brain Neurodynamic and Tensor Calculus

  • Germano Resconi
Part of the Studies in Computational Intelligence book series (SCI, volume 407)


This chapter presents the neurodynamic of brain as a part of a geometric space. Logic is not only true and false but new topics in logic as fuzzy set and many valued logic extend the simple idea of true and false to values or coordinates in geometric space where the true and false are positions in this space. Thus, the holistic approach to Fuzzy and many value logic of the agent can be well represented by geometry of agent knowledge. We assume that Logic is included into the neurodynamic of the Brain.


Fisher Information Ordinary Differential Equation Geometric Space Tensor Calculus Analog Electrical Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Freeman, W.J.: Mass Action In The Nervous System. In: Examination of the Neurophysiological Basis of Adaptive Behavior through the EEG. Academic Press, New York (1975)Google Scholar
  2. 2.
    Kozma, R., Freeman, W.J.: Intermittent spatio-temporal desynchronization and sequenced synchrony in ECoG signals. Interdispl. J. Chaos 18, 037131 (2008); Bollobas, B., Kozma, R., Miklos, D. (eds.): Handbook of Large-Scale Random Networks, Bolyai Society Mathematical Studies. Springer, New York (2009) ISBN: 978-3-540-69394-9; Balister, P., Bollobas, B., Kozma, R.: Mean field models of probabilistic cellular automata. Random Structures and Algorithms 29, 399–415 (2006); Kozma, R., Puljic, M., Bollobas, B., Balister, P., Freeman, W.J.: Phase Transitions in the Neuropercolation Model of Neural Populations with Mixed Local and Non-Local Interactions. Biol. Cybernetics 92(6), 367–379 (2005); Kozma, R., Freeman, W.J.: Basic Principles of the KIV Model and its application to the Navigation Problem. Journal of Integrative Neuroscience 2(1), 125–146 (2003) CrossRefGoogle Scholar
  3. 3.
    Freeman, W.J.: A pseudo-equilibrium thermodynamic model of information processing in nonlinear CNS dynamics. Neural Networks (2008), doi:10.1016/j.neunet.2007.12.011Google Scholar
  4. 4.
    Silverberg, J., Widom, A.: Classical Analytical Mechanics and En-tropy Production. ArXiv:Physics/0701096v1 (January 8, 2007)Google Scholar
  5. 5.
    Kohno, T., Aihara, K.: A Design Method for Analog and Digital Silicon Neurons-Mathematical-Model-Based Method. In: AIP Conference Proceedings, vol. 1028, pp. 113–128 (2008)Google Scholar
  6. 6.
    Hindmarsh, J., Rose, R.: A model of neuronal bursting using three coupled first order differential equations. Proceedings of the Royal Society of London B221, 87–102 (1984)CrossRefGoogle Scholar
  7. 7.
    Rinzel, J., Ermentrout, B.: Analysis of Neural Excitability and Oscillations. In: Koch, C., Segev, I. (eds.) Methods in Neural Modeling, pp. 251–291. MIT Press (1998)Google Scholar
  8. 8.
    David Brown, J., York Jr., J.W.: Jacobi’s Action and the Density of States ArXiv: gr –qe /9301018v2 (January 19, 1993)Google Scholar
  9. 9.
    Resconi, G.: Modelling Fuzzy Cognitive Map By Electrical and Chemical Equivalent Circuits. In: Joint Conference on Information Science, Salt lake City Center USA, July 8-24 (2007)Google Scholar
  10. 10.
    Resconi, G., Srini, V.P.: Electrical Circuit As A Morphogenetic System. GEST International Transactions on Computer Science and Engineering 53(1), 47–92 (2009)Google Scholar
  11. 11.
    Todorov, E.: Optimality principles in sensorimotor control (review). Nature Neuroscience 7(9), 907–915 (2004)CrossRefGoogle Scholar
  12. 12.
    Todorov, E., Jordan, M.: Optimal feedback control as a theory of motor coordination. Nature Neuroscience 5(11), 1226–1235 (2002)CrossRefGoogle Scholar
  13. 13.
    Mandzel, A.A., Flach, T.: Geometric Methods in the study of human motor control. Cognitive Studies 6(3), 309–321 (1999)Google Scholar
  14. 14.
    Haridas, M., Patil, S., Manjunath, T.C.: Recent ATC’s in the design of Memristors. International Journal of Computer and Electrical Engineering 2(3) (2010)Google Scholar
  15. 15.
    Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using two first-order differential equations. Nature 269, 162–164 (1982)CrossRefGoogle Scholar
  16. 16.
    Wilke, S.D., Eurich, C.W.: Neural spike statistics modify the impact of background noise. Neurocomputing 38(40), 445–450 (2001)CrossRefGoogle Scholar
  17. 17.
    Arbib, M.A., Amari, S.I.: J. Theoretical Biology 112, 123–155 (1985)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ostriker, G., Pellionisz, A., Llinas, R.: Tensor Computer model of gaze – I. oculomotor activity is expressed in non-orthogonal natural coordinates. Neuroscience 14(2), 483–500 (1985)CrossRefGoogle Scholar
  19. 19.
    Deward, L.: Classical mechanics, Lecture Physics 3001 Deaprtment of Theoretical Physics research School of Physical Sciences & Engineering. The Australia national University Camberra ACT 02000Google Scholar
  20. 20.
    Kirkpatrick, S.: Percolation and Conduction. Rev. Mod. Phys. 45, 574–588 (1973); IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 CrossRefGoogle Scholar
  21. 21.
    London, M.: The effect of the synaptic input on computational processes in neurons Thesis, University of Jerusalem (2001)Google Scholar
  22. 22.
    Poggio, T., Koch, C.: An analog model of computation for the ill-posed problems of early vision, MIT Artificial Intelligence laboratory (May 1984)Google Scholar
  23. 23.
    Poggio, T., Koch, C.: III Posed Problems in early vision from Computational Theory of Analogue Network. Proceeding of the Royal Society of London, Series B. Biology Science 226(1244), 303–323 (1985)zbMATHCrossRefGoogle Scholar
  24. 24.
    Freeman, W.J.: Journal of Mind and Behaviour 18(2-3), 291–304 (1997)Google Scholar
  25. 25.
    Krone, G.: Tensorial Analysis of network. General Electrical Publication (1939)Google Scholar
  26. 26.
    Maurice, O.: Compatibilité electromagnetique des systemes complexes. Heimes Sciences (2007)Google Scholar
  27. 27.
    Amari, S.-I.: Infromation Geometry on Hierarchy of probability. IEEE Transaction on Information Theory 47(5), 1701 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Treyer, W.E.: Caltech laboratory, CNS 221 Spring 2006 Lecture 1 (2006),
  29. 29.
    Young, E.: 5-3164 System Biology II Neural Network (580-422) Lecture 9 nonlinear cable theory, eyoung@jhu.eduGoogle Scholar
  30. 30.
    Chua, L., Kang, S.M.: Memresistive devise and systems. Proceeding of IEEE 64(2), 209–223 (1976)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Dept. Mathematics and PhysicsCatholic UniversityBresciaItaly

Personalised recommendations