Moon pp 201-234 | Cite as

Potential ISRU of Lunar Regolith for Planetary Habitation Applications

  • Eric J. Faierson
  • Kathryn V. Logan


When humans return to the Moon, In-Situ Resource Utilization (ISRU) of lunar regolith will allow a more efficient, less costly, and thus, a more sustainable human presence on the Moon to be achieved. Maintaining a human presence on the Moon will require methods to mitigate lunar dust, provide protection from micro-meteoroid impact, and reduce astronaut exposure to radiation. It would also be desirable to grow plants at the outpost, both for food and other life support purposes. Furthermore, extraction of resources such as Helium-3, metals, and oxygen from lunar regolith would also be of value.


Energy Dispersive Spectroscopy Energy Dispersive Spectroscopy Analysis Whisker Growth Lunar Regolith Vacuum Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, C.C., Graf, J.C., McKay, D.S.: Sintering Bricks on the Moon. In: Engineering, Construction, and Operations in Space IV, pp. 1220–1229 (1994)Google Scholar
  2. Curreri, P.A., Ethridge, E.C., Hudson, S.B., Miller, T.Y., Grugel, R.N., Sen, S., Sadoway, D.R.: Process Demonstration For Lunar In Situ Resource Utilization-Molten Oxide Electrolysis, NASA Marshall Space Flight Center, pp. 1–32 (2006)Google Scholar
  3. Fabes, B., Poisl, W., Beck, A., Raymond, L.: Processing and Properties of Lunar Ceramics. In: AIAA Space Programs and Technology Conferences, Huntsville, Al (1992)Google Scholar
  4. Faierson, E., Logan, K., Hunt, M., Stewart, B.: Lunar Habitat Construction Utilizing In-Situ Resources and an SHS Reaction. In: AIAA Space 2008 Conference and Exposition, San Diego (2008)Google Scholar
  5. Faierson, E.J., Logan, K.V.: Geothermite Reactions for In-Situ Resource Utilization on the Moon and Beyond. In: ASCE Earth and Space Conference 2010, Honolulu, HI (2010)Google Scholar
  6. Faierson, E.J., Logan, K.V., Stewart, B.K., Hunt, M.P.: Demonstration of concept for fabrication of lunar physical assets utilizing lunar regolith simulant and a geothermite reaction. Acta Astronautica 67, 38–45 (2010)CrossRefGoogle Scholar
  7. Gaier, J.R., Sechkar, E.A.: Lunar Simulation in the Lunar Dust Adhesion Bell Jar, NASA Glenn Research Center (2007)Google Scholar
  8. Guojian, J., Hanrui, Z., Jiong, Z., Meiling, R., Wenlan, L., Fengying, W., Baolin, Z.: Morphologies and Growth Mechanisms of Aluminum Nitride Whiskers by SHS Method-Part 1. Journal of Materials Science 35, 57–62 (2000a)CrossRefGoogle Scholar
  9. Guojian, J., Hanrui, Z., Jiong, Z., Meiling, R., Wenlan, L., Fengying, W., Baolin, Z.: Morphologies and Growth Mechanisms of Aluminum Nitride Whiskers by SHS Method-Part 2. Journal of Materials Science 35, 63–69 (2000b)CrossRefGoogle Scholar
  10. Heiken, G.H., Vaniman, D.T., French, B.M., Schmitt, H.H. (eds.): Lunar Sourcebook. Cambridge University Press (1991)Google Scholar
  11. Kumashiro, Y.: Electric Refractory Materials. CRC Press (2000)Google Scholar
  12. Martirosyan, K.S., Luss, D.: Nanoenergetic Fabrication of Dense Ceramics for Lunar Exploration. Lunar and Planetary Science XXXIX (2008)Google Scholar
  13. Mei, J., Halldearn, R.D., Xiao, P.: Mechanisms of the Aluminum-Iron Oxide Thermite Reaction. Scripta Materialia 41(5), 541–548 (1999)CrossRefGoogle Scholar
  14. Mossino, P.: Some Aspects in Self-propagating High-temperature Synthesis. Ceramics International 30, 311–332 (2004)CrossRefGoogle Scholar
  15. NASA-MSFC, Characterization Summary of JSC-1AF Lunar Mare Regolith Simulant (2006)Google Scholar
  16. NASA-MSFC, Characterization Summary of JSC-1A Bulk Lunar Mare Regolith Simulant (2007)Google Scholar
  17. Sen, S., Ray, C.S., Reddy, R.G.: Processing of Lunar Soil Simulant for Space Exploration Applications. Materials Science and Engineering A 413-414, 592–597 (2005)CrossRefGoogle Scholar
  18. Taylor, L.A.: Resources for a Lunar Base: Rocks, Minerals, and Soil of the Moon. In: 2nd Conference on Lunar Bases and Space Activities (1992)Google Scholar
  19. Taylor, L.A., Meek, T.T.: Microwave Sintering of Lunar Soil: Properties, Theory, and Practice. Journal of Aerospace Engineering 18(3), 188–196 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Eric J. Faierson
    • 1
  • Kathryn V. Logan
    • 1
  1. 1.Virginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations