Moon pp 165-187 | Cite as

Oxygen from Lunar Regolith

  • Carsten Schwandt
  • James A. Hamilton
  • Derek J. Fray
  • Ian A. Crawford

Background and Introduction

In the year 2004 NASA declared its mission to prepare for a return of man to the moon as early as 2015 but no later than 2020, while continuing with robotic missions to Mars (NASA 2004). As a long-term goal, it was intended to establish permanent human presence on the moon and eventually send human missions to Mars. Although the future of US space exploration policy is now more uncertain, following a recent review (Augustine Commission 2009) and the cancellation of the Constellation Program (NASA 2010a), it remains true that an extended human presence on the moon is desirable for scientific and economic reasons (e.g., Crawford 2004; Spudis 2005). For this to become possible, significant progress is needed in the field of ‘living off the land’, or in situ resource utilisation (ISRU).


Molten Salt Lunar Regolith Lunar Soil Inert Anode Lunar Reconnaissance Orbiter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander, D.T.L., Schwandt, C., Fray, D.J.: Microstructural kinetics of phase transformations during electrochemical reduction of titanium dioxide in molten calcium chloride. Acta Materialia 54, 2933–2944 (2006)CrossRefGoogle Scholar
  2. 2.
    Alexander, D.T.L., Schwandt, C., Fray, D.J.: The electro-deoxidation of dense titanium dioxide precursors in molten calcium chloride giving a new reaction pathway. Electrochimica Acta 56, 3286–3295 (2011)CrossRefGoogle Scholar
  3. 3.
    Anand, M.: Lunar water: a brief review. Earth, Moon, and Planets 107, 65–73 (2010)CrossRefGoogle Scholar
  4. 4.
    Augustine Commission, Review of US human spaceflight plans committee: seeking a human spaceflight program worthy of a great nation (2009),
  5. 5.
    Barnett, R., Kilby, K.T., Fray, D.J.: Reduction of tantalum pentoxide using graphite and tin-oxide-based anodes via the FFC-Cambridge process. Metallurgical and Materials Transactions B 40, 150–157 (2009)CrossRefGoogle Scholar
  6. 6.
    Chen, G.Z., Fray, D.J., Farthing, T.W.: Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature 407, 361–364 (2000)CrossRefGoogle Scholar
  7. 7.
    Colaprete, A., Schultz, P., Heldmann, J., Wooden, D., Shirley, M., Ennico, K., Hermalyn, B., Marshall, W., Ricco, A., Elphic, R.C., Goldstein, D., Summy, D., Bart, G.D., Asphaug, E., Korycansky, D., Landis, D., Sollitt, L.: Detection of water in the LCROSS ejecta plume. Science 330, 463–468 (2010)CrossRefGoogle Scholar
  8. 8.
    Colson, R.O., Haskin, L.A.: Oxygen from the lunar soil by molten silicate electrolysis. In: McKay, F.A., McKay, D.S., Duke, M.B. (eds.) Space Resources, vol. 3, Materials, NASA, Lyndon B Johnson Space Center, Houston, TX, pp. 195–209 (1992)Google Scholar
  9. 9.
    Colson, R.O., Haskin, L.A.: Producing oxygen by silicate melt electrolysis. In: Lewis, J., Matthews, M.S., Guerrieri, M.L. (eds.) Resources of Near-Earth Space, University of Arizona Press, Tucson, AZ, pp. 109–127 (1993)Google Scholar
  10. 10.
    Crawford, I.A.: The scientific case for renewed human activities on the moon. Space Policy 20, 91–97 (2004)CrossRefGoogle Scholar
  11. 11.
    Curreri, P.A., Ethridge, E.C., Hudson, S.B., Miller, T.Y., Grugel, R.N., Sen, S., Sadoway, D.R.: Process demonstration for lunar in situ resource utilization – molten oxide electrolysis. MSFC Independent Research and Development, Project No 5-81, NASA Center for AeroSpace Information, Hanover, MD (2006)Google Scholar
  12. 12.
  13. 13.
    ESA-ESRIN, Initially identified areas of interest for Europe, utilisation of in-situ resources (2009b),
  14. 14.
    Fray, D.J.: Emerging molten salt technologies for metals production. JOM 53(10), 26–31 (2001)CrossRefGoogle Scholar
  15. 15.
    Fray, D.J.: Anodic and cathodic reactions in molten calcium chloride. Canadian Metallurgical Quarterly 41, 433–439 (2002)Google Scholar
  16. 16.
    Fray, D.J., Doughty, G.R.: Improvements in electrode materials. Patent WO2009010737 (2009)Google Scholar
  17. 17.
    Fray, D.J., Farthing, T.W., Chen, Z.: Removal of oxygen from metal oxides and solid solutions by electrolysis in a fused salt. Patent WO9964638 (1999)Google Scholar
  18. 18.
    Fray, D.J., Schwandt, C., Doughty, G.R.: Improved electrolytic method, apparatus and product. Patent WO2006027612 (2006)Google Scholar
  19. 19.
    GES, The global exploration strategy: framework for coordination (2007),
  20. 20.
    Gibson, M.A., Knudsen, C.W.: Lunar oxygen production from ilmenite. In: Mendell, W.W. (ed.) Lunar Bases and Space Activities of the 21st Century. Lunar and Planetary Institute, Houston, TX, pp. 543–550 (1985)Google Scholar
  21. 21.
    Habashi, F.: Handbook of Extractive Metallurgy. Titanium, vol. 2, ch. 22. Wiley-VCH, Heidelberg (1997)Google Scholar
  22. 22.
    Heiken, G.H., Vaniman, D.T., French, B.M. (eds.): The Lunar Sourcebook. Cambridge University Press, Cambridge (1991)Google Scholar
  23. 23.
    Jiao, S.Q., Fray, D.J.: Development of an inert anode for electrowinning in calcium chloride-calcium oxide melts. Metallurgical and Materials Transactions B 41, 74–79 (2010)CrossRefGoogle Scholar
  24. 24.
    Jiao, S.Q., Kumar, K.N.P., Kilby, K.T., Fray, D.J.: Preparation and electrical properties of x CaRuO3 / (1-x) CaTiO3 perovskite composites. Materials Research Bulletin 44, 1738–1742 (2009)CrossRefGoogle Scholar
  25. 25.
    Jolliff, B.L., Wieczorek, M.A., Shearer, C.K., Neal, C.R. (eds.): New Views of the Moon. Reviews in Mineralogy & Geochemistry, vol. 60. Mineralogical Society of America and the Geochemical Society, Chantilly, VA (2006)Google Scholar
  26. 26.
    Kilby, K.C.T., Centeno, L., Doughty, G., Mucklejohn, S., Fray, D.J.: The electrochemical production of oxygen and metal via the FFC-Cambridge process. Space Resources Roundtable VIII, 64–65 (2006)Google Scholar
  27. 27.
    Kilby, K.T., Jiao, S.Q., Fray, D.J.: Current efficiency studies for graphite and SnO2-based anodes for the electro-deoxidation of metal oxides. Electrochimica Acta 55, 7126–7133 (2010)CrossRefGoogle Scholar
  28. 28.
    Knudsen, C.W., Gibson, M.A.: Processing lunar soils for oxygen and other materials. In: McKay, F.A., McKay, D.S., Duke, M.B. (eds.) Space Resources, vol. 3, Materials, NASA, Lyndon B Johnson Space Center, Houston, TX, pp. 186–194 (1992)Google Scholar
  29. 29.
    NASA, The vision for space exploration (2004),
  30. 30.
  31. 31.
    NASA, Overview of in-situ resource utilization (ISRU) architecture (2007a),
  32. 32.
    NASA, In-situ resource utilization (ISRU), development & incorporation plans (2007b),
  33. 33.
    NASA, Material safety data sheet NU-LHT-2M (2008),
  34. 34.
    NASA, LCROSS impact data indicates water on moon (2009),
  35. 35.
    NASA, Remarks by the President on space exploration in the 21st century (2010a),
  36. 36.
  37. 37.
    NASA, NASA extends crew flight contract with Russian Space Agency (2011),
  38. 38.
    Neal, C.R., Taylor, L.A.: Petrogenesis of mare basalts: a record of lunar volcanism. Geochimica et Cosmochimica Acta 56, 2177–2211 (1992)CrossRefGoogle Scholar
  39. 39.
    Paige, D.A., Siegler, M.A., Zhang, J.A., Hayne, P.O., Foote, E.J., Bennett, K.A., Vasavada, A.R., Greenhagen, B.T., Schofield, J.T., McCleese, D.J., Foote, M.C., DeJong, E., Bills, B.G., Hartford, W., Murray, B.C., Allen, C.C., Snook, K., Soderblom, L.A., Calcutt, S., Taylor, F.W., Bowles, N.E., Bandfield, J.L., Elphic, R., Ghent, R., Glotch, T.D., Wyatt, M.B., Lucey, P.G.: Diviner lunar radiometer observations of cold traps in the moon’s south polar region. Science 330, 479–482 (2010)CrossRefGoogle Scholar
  40. 40.
    Rosenberg, S.D., Beegle Jr., R.L., Guter, G.A., Miller, F.E., Rothenberg, M.: The onsite manufacture of propellant oxygen from lunar resources. In: McKay, F.A., McKay, D.S., Duke, M.B. (eds.) Space Resources, vol. 3, Materials, NASA, Lyndon B Johnson Space Center, Houston, TX, pp. 162–185 (1992)Google Scholar
  41. 41.
    Rosenberg, S.D., Musbah, O., Rice, E.E.: Carbothermal reduction of lunar materials for oxygen production on the moon: reduction of lunar simulants with methane. Lunar and Planetary Science 27, 1105–1106 (1996)Google Scholar
  42. 42.
    Schwandt, C., Fray, D.J.: Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride. Electrochimica Acta 51, 66–76 (2005)CrossRefGoogle Scholar
  43. 43.
    Schwandt, C., Fray, D.J.: The electrochemical reduction of chromium sesquioxide in molten calcium chloride under cathodic potential control. Zeitschrift für Naturforschung A 62, 655–670 (2007)Google Scholar
  44. 44.
    Schwandt, C., Alexander, D.T.L., Fray, D.J.: The electro-deoxidation of porous titanium dioxide precursors in molten calcium chloride under cathodic potential control. Electrochimica Acta 54, 3819–3829 (2009)CrossRefGoogle Scholar
  45. 45.
    Schwandt, C., Doughty, G.R., Fray, D.J.: The FFC-Cambridge process for titanium metal winning. Key Engineering Materials 436, 13–25 (2010)CrossRefGoogle Scholar
  46. 46.
    Senior, C.L.: Lunar oxygen production by pyrolysis. In: Lewis, J., Matthews, M.S., Guerrieri, M.L. (eds.) Resources of Near-Earth Space, University of Arizona Press, Tucson, AZ, pp. 179–197 (1993)Google Scholar
  47. 47.
    Shchetkovskiy, A., McKechnie, T., Sadoway, D.R., Paramore, J., Melendez, O., Curreri, P.A.: Development and testing of high surface area iridium anodes for molten oxide electrolysis. In: Song, G.B., Malla, R.B. (eds.) Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments. ASCE, New York (2010), doi:10.1061/41096(366)96Google Scholar
  48. 48.
    Sibille, L., Sadoway, D., Tripathy, P., Standish, E., Sirk, A., Melendez, O., Stefanescu, D.: Performance testing of molten regolith electrolysis with transfer of molten material for the production of oxygen and metals on the moon. NASA Technical Reports Server, NASA, Kennedy Space Center, Report No KSC-2009-310 (2010)Google Scholar
  49. 49.
    Spudis, P.D.: The moon and the new Presidential space vision. Earth, Moon, and Planets 94, 213–219 (2005)CrossRefGoogle Scholar
  50. 50.
    Spudis, P.D., Zellner, N., Delano, J., Whittet, D.C.B., Fessler, B.: Petrologic mapping of the moon: a new approach. In: 33rd Annual Lunar and Planetary Science Conference, Houston, TX, Abstract 1104 (2002)Google Scholar
  51. 51.
    Spudis, P.D., Bussey, B., Plescia, J., Josset, J.-L., Beauvivre, S.: Geology of Shackleton crater and the south pole of the moon. Geophysical Research Letters 35, L14201, 1–5 (2008)Google Scholar
  52. 52.
    Standish, E.: Design of a molten materials handling device for support of molten regolith electrolysis. Masters Thesis, Ohio State University (2010)Google Scholar
  53. 53.
    Steurer, W.: Vapor phase pyrolysis. In: McKay, F.A., McKay, D.S., Duke, M.B. (eds.) Space Resources, vol. 3, Materials, NASA, Lyndon B Johnson Space Center, Houston, TX, pp. 210–213 (1992)Google Scholar
  54. 54.
    Stoeser, D., Wilson, S., Rickman, D.: Design and specifications for the highland regolith prototype simulants NU-LHT-1M and -2M. NASA Technical Reports Server, NASA, Marshall Space Flight Center, Report No NASA/TM-2010-216438 (2010)Google Scholar
  55. 55.
    Sullivan, T.A.: A modified sulfate process to lunar oxygen. In: Sadeh, W.Z., Sture, S., Miller, R.J. (eds.) Engineering, Construction, and Operations in Space III, pp. 641–650. ASCE, New York (1992)Google Scholar
  56. 56.
    The White House, Remarks by the President on U.S. space policy (2004),
  57. 57.
    UK Space Agency, Economic analysis to support a study on the options for the UK involvement in space exploration. Final Report by London Economics (2009)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Carsten Schwandt
    • 1
    • 2
  • James A. Hamilton
    • 2
  • Derek J. Fray
    • 1
  • Ian A. Crawford
    • 3
  1. 1.University of CambridgeCambridgeUK
  2. 2.Green Metals LtdLondonUK
  3. 3.University of LondonLondonUK

Personalised recommendations