Skip to main content

Lunar Holes and Lava Tubes as Resources for Lunar Science and Exploration

  • Chapter
Moon

Introduction

The Moon is the nearest celestial body to the Earth. As such, it has long been investigated to understand its formation and evolution, as a paradigm for better understanding the terrestrial planets, as well as all airless bodies in our solar system (e.g., Vesta, Phobos). The Moon’s proximity to the Earth—more than one hundred times closer than any planet — makes it a convenient target for exploration by spacecraft. Since the dawn of the space age in the previous century, we have explored the Moon with several spacecraft and even succeeded in sending astronauts there. One of the lessons of those explorations that hinders any future lunar expeditions is the severe conditions on the lunar surface. The lack of an atmosphere (10-12 torr) means that cosmic/galactic/solar rays, as well as the many micrometeorites directly striking the surface; in addition, surface temperatures vary widely, over a day-night range of more than 300 K.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ashley, J.W., Boyd, A.K., Hiesinger, H., Robinson, M.S., Tran, T., van der Bogert, C.H., Wagner, R.V., LROC Science Team: Lunar pits: Sublunarean voids and the nature of Mare emplacement. In: 42nd Lunar and Planetary Science Conference, #2771. Lunar and Planetary Science Institute, Houston (2011)

    Google Scholar 

  • Banerdt, W.B., Golombek, M.P., Tanaka, K.L.: Stress and tectonics on Mars. In: Kieffer, H., Jakosky, B.M., Snyder, C.W., Matthews, M. (eds.) Mars, pp. 249–297. Univ of Arizona Press, Tuscon (1992)

    Google Scholar 

  • Calvari, S., Pinkerton, H.: Lava tube morphology on Etna and evidence for lava flow emplacement mechanisms. J. Volcanol. Geotherm. Res. 90, 263–280 (1999)

    Article  Google Scholar 

  • Clark, R.N.: Detection of Adsorbed Water and Hydroxyl on the Moon. Science 326, 562–564 (2009)

    Article  Google Scholar 

  • Coombs, C.R., Hawke, B.R.: A search for intact lava tubes on the Moon Possible lunar base habitats. In: The Second Conference on Lunar Bases and Space Activities of the 21st Century l, pp. 219–229 (1992)

    Google Scholar 

  • Cruikshank, D.P., Wood, C.A.: Lunar rilles and Hawaiian volcanic features; possible analogues. The Moon 3, 412–447 (1971)

    Article  Google Scholar 

  • Cushing, G.E., Titus, T.N., Wynne, J.J., Christensen, P.R.: THEMIS observes possible cave skylights on Mars. Geophys. Res. Let. 34, L17201 (2007)

    Article  Google Scholar 

  • Cushing, G.E.: Visible Evidence of Cave-Entrance Candidates in Martian Fresh-Looking Pit Craters. In: 42nd Lunar and Planetary Science Conference, #2494 Lunar and Planetary Science Institute, Houston (2011)

    Google Scholar 

  • Denisov, A.N., Kuznetsov, N.V., Nymmik, R.A., Panasyuk, M.I., Sobolevskii, N.M.: On the problem of lunar radiation environment. Cosmic Research 48(6), 509–516 (2010)

    Article  Google Scholar 

  • Feldman, W.C., Prettyman, T.H., Maurice, S., Nelli, S., Elphic, R., Funsten, H.O., Gasnault, O., Lawrence, D.J., Murphy, J.R., Tokar, R.L., Vaniman, D.T.: Topographic control of hydrogen deposits at low latitudes to midlatitudes of Mars. J. Geophys. Res. 110, E11009 (2005), doi:10.1029/2005JE002452

    Article  Google Scholar 

  • Gault, D.E., Hörz, F., Brownlee, D.E., Hartung, J.B.: Mixing of the lunar regolith. In: Proc. Lunar Science Conference V, pp. 2365–2386 (1974)

    Google Scholar 

  • Gornitz, V.: The origin of sinuous rilles. Moon 6, 337–356 (1973), doi:10.1007/BF00562210

    Article  Google Scholar 

  • Greeley, R.: Lava tubes and channels in the Lunar Marius Hills. The Moon 3, 289–314 (1971)

    Article  Google Scholar 

  • Grun, E., Zook, H.A., Fetctig, H., Gese, R.H.: Collisional Balance of the Meteoritic Complex. Icarus 62, 244–272 (1985)

    Article  Google Scholar 

  • Haruyama, J., Matsunaga, T., Ohtake, M., Morota, T., Honda, C., Yokota, Y., Torii, M., Ogawa, Y.: LISM working group Global lunar-surface mapping experiment using the Lunar Imager/Spectrometer on SELENE. Earth Planets Space 60, 243–256 (2008a)

    Google Scholar 

  • Haruyama, J., Ohtake, M., Matsunaga, T., Morota, T., Honda, C., Yokota, Y., Pieters, C.M., Hara, S., Hioki, K., Saiki, K., Miyamoto, H., Iwasaki, A., Abe, M., Ogawa, Y., Takeda, H., Shirao, M., Yamaji, A., Josset, J.-L.: Lack of exposed ice inside lunar South Pole Shackleton crater. Science 322, 938–939 (2008b)

    Article  Google Scholar 

  • Haruyama, J., Ohtake, M., Matsunaga, T., Morota, T., Honda, C., Yokota, Y., Abe, M., Ogawa, Y., Miyamoto, H., Iwasaki, A., Pieters, C.M., Asada, N., Demura, H., Hirata, N., Terazono, J., Sasaki, S., Saiki, K., Yamaji, A., Torii, M., Josset, J.-L.: Long-lived volcanism on the lunar farside revealed by SELENE Terrain Camera. Science 323, 905–908 (2009a)

    Article  Google Scholar 

  • Haruyama, J., Hioki, K., Shirao, M., Morota, T., Hiesinger, H., van der Bogert, C.H., Miyamoto, H., Iwasaki, A., Yokota, Y., Ohtake, M., Matsunaga, T., Hara, S., Nakanotani, S., Pieters, C.M.: Possible lunar lava tube skylight observed by SELENE cameras. Geophys. Res. Let. 36, L21206 (2009b), doi:10.1029/2009GL040635

    Article  Google Scholar 

  • Haruyama, J., Hara, S., Hioki, K., Morota, T., Yokota, Y., Shirao, M., Hiesinger, H., van der Bogert, C.H., Miyamoto, H., Iwasaki, A., Ohtake, M., Saito, Y., Matsunaga, T., Nakanotani, S., Pieters, C.M., Lucey, P.G.: New discoveries of lunar holes in Mare Tranquillitatis and Mare Ingenii. In: 41st Lunar and Planetary Science Conference, #1285. Lunar and Planetary Science Institute, Houston (2010)

    Google Scholar 

  • Haruyama, J., Morota, T., Shirao, M., Hiesinger, H., van der Bogert, C.H., Pieters, C.M., Lucey, P.G., Ohtake, M., Nishino, M., Matsunaga, T., Yokota, Y., Miyamoto, H., Iwasaki, A.: Water in lunar holes? In: 42nd Lunar and Planetary Science Conference, #1134. Lunar and Planetary Science Institute, Houston (2011)

    Google Scholar 

  • Hayatsu, K., Hareyama, M., Kobayashi, S., Yamashita, N., Sakurai, K., Hasebe, N.: HZE Particle and Neutron Dosages from Cosmic Rays on the Lunar Surface. In: Proc. Int Workshop Advances in Cosmic Ray Science. J. Phys. Soc. Jpn 78 (suppl. A), 149–152 (2009)

    Google Scholar 

  • Head, J.W.: Lunar Volcanism in Space and Time. Rev. Geophys. Space Phys. 14(2), 265–300 (1976)

    Article  Google Scholar 

  • Head, J.W., Wilson, L.: Lunar mare volcanism: Stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochim Cosmochim Acta 56, 2155–2175 (1992)

    Article  Google Scholar 

  • Hörz, F.: Lava tubes; Potential shelters for habitats. In: Mendell, W.W. (ed.) Lunar Bases and Space Activities of the 21st Century, pp. 405–412 (1985)

    Google Scholar 

  • Hulme, G.: Turbulent lava flow and the formation of lunar sinuous rilles. Mod. Geol 4, 107–117 (1973)

    Google Scholar 

  • Ichimura, A.S., Zent, A.P., Quinn, R.C., Taylor, L.A.: Formation and Detection of OH/OD in Lunar Soils After 1H2+/D2+ Bombardment. In: 42nd Lunar and Planetary Science Conference, # 2724. Lunar and Planetary Science Institute, Houston (2011)

    Google Scholar 

  • Keihm, S.J., Langseth, M.G.: Surface brightness temperatures at the Apollo 17 heat flow site: Thermal conductivity of the upper 15 cm of regolith. In: Proc. Lunar Science Conference IV, pp. 2503–2513 (1973)

    Google Scholar 

  • Keszthelyi, L.: A preliminary thermal budget for lava tubes. J. Geophys. Res. 100(B10), 20411–20420 (1995)

    Article  Google Scholar 

  • Langseth, M.G., Keihm, S.J., Peters, K.: Revised lunar heat-flow values. In: Proc. Lunar Science Conference VII, pp. 3143–3171 (1976)

    Google Scholar 

  • Mandeville, J.C., Bariteau, M.: Cosmic dust and micro-debris measurements on the MIR space station. Adv. Space Res. 28(9), 1317–1324 (2001)

    Article  Google Scholar 

  • Marsch, E., Mühlhäuser, K.–. H., Schwenn, R., Rosenbauer, H., Pilipp, W., Neubauer, F.M.: Solar Wind Protons - Three-Dimensional Velocity Distributions and Derived Plasma Parameters Measured Between 0.3 and 1 AU. J. Geophys. Res. 87, 52–72 (1982)

    Article  Google Scholar 

  • McBride, N., McDonnell, J.A.M., Gardner, D.J., Griffiths, A.D.: Meteoroids at 1 AU: Dynamic and Properties. In: Burke, W., Guyenne, T.-D. (eds.) Environment Modeling for Space-based Applications, Symposium Proceedings (ESA SP-392): ESTEC Noordwijk, pp. 335–342 (1996)

    Google Scholar 

  • McCord, T.B., Taylor, L.A., Combe, J.-P., Kramer, G., Pieters, C.M., Sunshine, J.M., Clark, R.N.: Sources and physical processes responsible for OH/H2O in the lunar soil as revealed by the Moon Mineralogy Mapper (M3). J. Geophys. Res. 116, E00G05 (2010), doi:10.1029/2010JE003711

    Google Scholar 

  • Melosh, H.J.: Impact Cratering. A Geologic Process. Oxford Univ. Press, New York (1989)

    Google Scholar 

  • Morota, T., Haruyama, J., Ohtake, M., Matsunaga, T., Honda, C., Yokota, Y., Kimura, J., Ogawa, Y., Hirata, N., Demura, H., Iwasaki, A., Sugihara, T., Saiki, K., Nakamura, R., Kobayashi, S., Ishihara, I., Takeda, H., Hiesinger, H.: Timing and characteristics of the latest mare eruption on the Moon. Earth and Planetary Science Letters 302, 255–266 (2011)

    Article  Google Scholar 

  • Naumann, R.J.: Pegasus satellite measurements of meteoroid penetration. NASA TM X-1192 (1985)

    Google Scholar 

  • Oberbeck, V.R., Willam, L.Q., Greeley, R.: On the origin of lunar sinuous rilles. Mod. Geol. 1, 75–80 (1969)

    Google Scholar 

  • Okubo, C.H., Martel, S.J.: Pit crater formation on Kilauea volcano. Hawaii J. Volcanol. Geotherm. Res. 86, 1–18 (1998), doi:10.1016/S0377-0273(98)00070-5

    Article  Google Scholar 

  • Pieters, C.M., Goswami, J.N., Clark, R.N., Annadurai, M., Boardman, J., Buratti, B., Combe, J.-P., Dyar, M.D., Green, R., Head, J.W., Hibbitts, C., Hicks, M., Isaacson, P., Klima, R., Kramer, G., Kumar, S., Livo, E., Lundeen, S., Malaret, E., McCord, T., Mustard, J., Nettles, J., Petro, N., Runyon, C., Staid, M., Sunshine, J., Taylor, L.A., Tompkins, S., Varanasi, P.: Character and Spatial Distribution of OH/H2O on the Surface of the Moon Seen by M3 on Chandrayaan-1. Science 326, 568–572 (2009)

    Article  Google Scholar 

  • Sakimoto, S.E., Crisp, H.J., Baloga, S.M.: Eruption constraints on tube-fed planetary lava flows. J. Geophys. Res. 102, 6597–6613 (1997)

    Article  Google Scholar 

  • Stubbs, T.J., Vondrak, R.R., Farell, W.M.: A dynamic fountain model for lunar dust. Ad. Spac. Res. 37, 59–66 (2006)

    Article  Google Scholar 

  • Sunshine, J.M., Farnham, T.L., Feaga, L.M., Groussin, O., Merlin, F., Milliken, R.E., A’Hearn, M.F.: Temporal and Spatial Variability of Lunar Hydration as Observed by the Deep Impact Spacecraft. Science 326, 565–568 (2009)

    Article  Google Scholar 

  • Valerio, A., Tallarico, A., Dragoni, M.: Mechanisms of formation of lava tubes. J. Geophys. Res. 113, B08209 (2008), doi:10.1029/2007JB005435

    Google Scholar 

  • Villanueva, G.L., Mumma, M.J., Bonev, B.P., DiSanti, M.A., Gibb, E.L., Böhnhardt, H., Lippi, M.: A sensitive search for deuterated water in Comets 8P/Tuttle. Astrophys J. 690, L5-L9 (2009)

    Google Scholar 

  • Vasavada, A.R., Paige, D.A., Wood, S.E.: Near-Surface Temperatures on Mercury and the Moon and the Stability of Polar Ice Deposits. Icarus 141, 179–193 (1999)

    Article  Google Scholar 

  • Wyrick, D., Ferrill, D.A., Morris, A.P., Colton, S.L., Sims, D.W.: Distribution, morphology, and origins of Martian pit crater chains. J. Geophys. Res. 109, E06005 (2004), doi:10.1029/2004JE002240

    Article  Google Scholar 

  • Zent, A.P., Ichimura, A.I., McCord, T.B., Taylor, L.A.: Production of OH/H2O in Lunar Samples via Proton Bombardment. In: 41st Lunar and Planetary Science Conference, Lunar and Planetary Science Institute, Houston (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Haruyama, J. et al. (2012). Lunar Holes and Lava Tubes as Resources for Lunar Science and Exploration. In: Badescu, V. (eds) Moon. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27969-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27969-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27968-3

  • Online ISBN: 978-3-642-27969-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics