Moon pp 87-103 | Cite as

Theoretical Modeling, Numerical Simulation, and Retrievals from Chang’E-1 Data for Microwave Exploration of Lunar Surface/Subsurface

  • Ya-Qiu Jin


China had successfully launched its first lunar exploration satellite Chang’E-1 (CE-1) on 24 October 2007 at lunar circle orbit ~200 km. A duplicate CE-2 at lower orbit ~100 km was also launched in 1 October 2010. A multi-channel microwave radiometer, for the first time, was aboard the CE-1 (and CE-2) satellite with the purpose of measuring the microwave thermal emission from the lunar surface layer (Jiang and Jin 2011). There are four frequency channels for CE-1 microwave radiometer: 3.0, 7.8, 19.35 and 37.0 GHz. The observation angle is 0°, the spatial resolution is about 35 km (for the channels 7, 19, 37 GHz) and 50 km (for 3 GHz), and the radiometric sensitivity about 0.5 K. The measurements of the multi-channel brightness temperature, T B, are applied to invert the global distribution of the regolith layer thickness, from which the total inventory of 3He (Helium-3) stored in the lunar regolith layer can be estimated quantitatively (Jiang and Jin 2011; Fa and Jin 2007a,b; 2010a,b; Jin and Fa 2009, 2010).


Solar Wind Brightness Temperature Synthetic Aperture Radar Lunar Surface Synthetic Aperture Radar Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Fa, W., Jin, Y.Q.: Simulation of brightness temperature from lunar surface and inversion of regolith-layer thickness. J. Geophys Research 112, E05003 (2007a)Google Scholar
  2. Fa, W., Jin, Y.Q.: Quantitative estimation of helium-3 spatial distribution in the lunar regolith layer. Icarus 190, 15–23 (2007b)CrossRefGoogle Scholar
  3. Fa, W., Jin, Y.Q.: Analysis of microwave brightness temperature of lunar surface and inversion of regolith layer thickness: primary results from Chang-E 1 multi-channel radiometer observation. Icarus 207, 605–615 (2010a)CrossRefGoogle Scholar
  4. Fa, W., Jin, Y.Q.: Global inventory of Helium-3 in lunar regolith estimated by multi-channel microwave radiometer on Chang’E-1. Chinese Science Bulletin 55, 4005–4009 (2010b)CrossRefGoogle Scholar
  5. Fa, W., Xu, F., Jin, Y.Q.: Image simulation of SAR remote sensing over inhomogeneously undulated lunar surface. Science in China (F) 52, 559–574 (2009)zbMATHCrossRefGoogle Scholar
  6. Fa, W., Jin, Y.Q.: Simulation of radar sounder echo from lunar surface and subsurface structure. Science in China (D) 53, 1043–1055 (2010)CrossRefGoogle Scholar
  7. Gong, X., Jin, Y.Q.: Diurnal Physical Temperatureio at Sinus Iridum Area Retrieved from Observations of CE-1 Microwave Radiometer. Icarus (in press, 2011a)Google Scholar
  8. Gong, X., Jin, Y.Q.: Diurnal Change of Thermal Emission from Lunar Craters with Relevance to Rock Abundance. Earth and Planetary Science Letters ( in press, 2011b)Google Scholar
  9. Grier, J.A., McEwen, A.S., Lucey, P.G., Milazzo, M., Strom, R.G.: The optical maturity of ejecta from large rayed craters: preliminary results and implications. In: Workshop on New Views of the Moon II, LPI Contribution no. 980, Lunar and Planetary Institute, Houston, pp. 19–20 (1999)Google Scholar
  10. Heiken, G.H., Vaniman, D.T., French, B.M.: Lunar Source-Book: A User’s Guide to the Moon. Cambridge University Press, London (1991)Google Scholar
  11. Jiang, J.S., Jin, Y.Q. (eds.): Selected paper on Microwave Exploration of Lunar Surface in Chinese Chang’E-1 Project. Science Press, Beijing (2011)Google Scholar
  12. Jin, Y.Q.: Electromagnetic Scattering Modelling for Quantitative Remote Sensing. World Scientific, Singapore (1994)CrossRefGoogle Scholar
  13. Jin, Y.Q.: Theory and Approach of Information Retrievals from Electro- magnetic Scattering and Remote Sensing. Springer, Netherlands (2005)Google Scholar
  14. Jin, Y.Q., Fa, W.: An inversion approach for lunar regolith layer thickness using optical albedo data and microwave emission simulation. Acta Astronautica 65, 1409–1423 (2009)CrossRefGoogle Scholar
  15. Jin, Y.Q., Fa, W.: The modeling analysis for microwave emission from stratified media of non-uniform lunar cratered terrain surface in Chinese Chang’E-1 observation. IEEE Geoscience and Remote Sensing Letters (3), 530–534 (2010)CrossRefGoogle Scholar
  16. Jin, Y.Q., Xu, F., Fa, W.: Numerical simulation of polarimetric radar pulse echoes from lunar regolith layer with scatter inhomogeneity and rough interfaces. Radio Science 42, RS3007 (2007), doi:10.1029/RS2006003523:1-10Google Scholar
  17. Keihm, S.J., Cutts, J.A.: Vertical-structure effects on planetary microwave brightness temperature measurements: applications to the lunar regolith. Icarus 48, 201–229 (1981)CrossRefGoogle Scholar
  18. Keihm, S.J., Langseth, M.G.: Lunar microwave brightness temperature observations reevaluated in the light of Apollo program findings. Icarus 24, 211–230 (1975)CrossRefGoogle Scholar
  19. Lucey, P.G., Blewett, D.T., Taylor, G.J., Hawke, B.R.: Imaging of lunar surface maturity. Journal of Geophys. Research 105(E8), 20377–20386 (2000)CrossRefGoogle Scholar
  20. Oberbeck, V.R., Quaide, W.L.: Genetic implication of lunar regolith thickness variations. Icarus 9, 446–465 (1968)CrossRefGoogle Scholar
  21. Shkuratov, Y.G., Bondarenko, N.V.: Regolith layer thickness mapping of the Moon by radar and optical data. Icarus 149, 329–338 (2001)CrossRefGoogle Scholar
  22. Shkuratov, Y.G., Starukhina, L.V., Kaydash, V.G., Bondarenko, N.B.: Distribution of 3He abundance over the lunar nearside. Solar System Research 33, 409–420 (1999)Google Scholar
  23. Shorthill, R.W., Saari, J.M.: Nonuniform cooling of the eclipsed Moon: a listing of thirty prominent anomalies. Science 150, 210–212 (1965)CrossRefGoogle Scholar
  24. Starukhina, L.V.: High radar response of Mercury polar regions: water ice or cold silicates? Lunar and Planetary Science XXXI, Abstr.#1301 and sections 5.2–5.4 (2000)Google Scholar
  25. Starukhina, L.V.: Water detection on atmosphereless celestial bodies: alternative explanations of the observations. J. Geophys. Res.-Planets 106, 14701–14710 (2001)CrossRefGoogle Scholar
  26. Starukhina, L.V.: Polar regions of the Moon as a potential repository of solar- wind-implanted gases. Advanced Space Research 37, 50–58 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Ya-Qiu Jin
    • 1
  1. 1.Fudan UniversityShanghaiChina

Personalised recommendations