Advertisement

Moon pp 57-85 | Cite as

Water on the Moon: What Is Derived from the Observations?

  • Larissa Starukhina

Introduction

Further exploration and utilization of the Moon crucially depends on the answer to the question: is there water on the Moon and, if so, in which form? Being a differentiated silicate planet without an atmosphere and with high day temperature, the Moon did not inspire many expectations for presence of water or any other volatile with small molecular weight. A hope of finding ice on the lunar surface was resuscitated by the hypothesis of ice delivery to the lunar poles after cometary impacts (Watson et al. 1961, Arnold 1979). Water molecules from a comet nucleus were supposed to migrate in the lunar exosphere until being trapped in cold polar regions. Less important sources of migrating water could be water-bearing meteorites and volcanic gases. Much effort has been devoted to study formation of “polar caps” and ice stability (e.g. Butler 1997, Starukhina 2008).

Keywords

Solar Wind Lunar Surface Radiation Defect Lunar Regolith Lunar Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J., Filice, A.: Spectral reflectance 0.4 to 2.0 microns of silicate rock powders. J. Geophys. Res. 72, 5705–5715 (1967)CrossRefGoogle Scholar
  2. Arnold, J.R.: Ice in the lunar polar regions. J. Geophys. Res. 84, 5659–5668 (1979)CrossRefGoogle Scholar
  3. Basilevsky, A.T., Ivanov, B.A., Florensky, K.P., Yakovlev, O.I., Feldman, B.I., Granovsky, L.V.: Impact craters on the Moon and planets Nauka, Moscow (1983) (in Russian) Google Scholar
  4. Bibring, J.-P., Langevin, Y., Rocard, F.: Synthesis of molecules by irradiation in silicates. In: Proc. Lunar. Sci. Conf.13, pp. A446–A450. LPI, Houston (1982)Google Scholar
  5. Biersack, J.P., Haggmark, L.G.: A Monte Carlo computer program for the transport of energetic ions in amorphous target. Nucl. Instr. Methods 174, 257–269 (1980)CrossRefGoogle Scholar
  6. Borg, J., Maurette, M., Durrieu, L., Jouret, C.: Ultramicroscopic features in micron-sized lunar dust grains and cosmophysics. In: Proc. Lunar. Sci. Conf. 2nd, vol. 3, pp. 2027–2040. LPI, Houston (1971)Google Scholar
  7. Borg, J., Comstick, G.M., Langevin, Y., Maurette, M., Jouffrey, B., Jouret, C.: A Monte-Carlo model for the exposure history of lunar dust grains in the ancient solar wind. Earth Planet Sci. Lett. 29, 161–174 (1976)CrossRefGoogle Scholar
  8. Burke, D.J., Dukes, C.A., Kim, J.H., Shi, J., Famá, M., Baragiola, R.A.: Solar wind contribution to surficial lunar water: laboratory investigations. Icarus 211, 1082–1088 (2011)CrossRefGoogle Scholar
  9. Butler, B.J.: The migration of volatiles on the surfaces of Mercury and the Moon. J. Geophys. Res. 102, 19283–19291 (1997)CrossRefGoogle Scholar
  10. Cadenhead, D., Brown, M., Rice, D., Stetter, J.: Some surface area and porosity characterization of lunar soils. In: Proc. Lunar. Sci. Conf. 8, pp. 1291–1303. LPI, Houston (1977)Google Scholar
  11. Clark, R.N.: Detection of adsorbed water and hydroxyl on the Moon. Science 326, 562–564 (2009)CrossRefGoogle Scholar
  12. Colaprete, A., 16 co-authors: Detection of water in the LCROSS ejecta plume. Science 330, 463–468 (2010)CrossRefGoogle Scholar
  13. Des Marais, D.J., Hayes, J.M., Meinschein, W.G.: The distribution in lunar soil of hydrogen released by pyrolysis. In: Proc. Lunar. Sci. Conf. 5, pp. 1811–1822. LPI, Houston (1974)Google Scholar
  14. Dran, J.C., Durrieu, L., Jouret, C., Maurette, M.: Habit and texture studies of lunar and meteoritic material with a 1 MeV electron microscope. Earth Planet Sci. Lett. 9, 391–400 (1970)CrossRefGoogle Scholar
  15. Eguchi, K., Ogiwara, S., Oguchi, M., et al.: A design concept of water production experiment mission for lunar resource utilization. Solar System Res. 33, 376–381 (1999)Google Scholar
  16. Feldman, W.C., Maurice, S., Binder, A.B., Barraclough, B.L., Elphic, R.C., Lawrence, D.J.: Fluxes of fast and epithermal neutrons from Lunar Prospector: Evidence for water ice at the lunar poles. Science 281, 1496–1500 (1998)CrossRefGoogle Scholar
  17. Feldman, W.C., Lawrence, D.J., Elphic, R.C., Barraclough, B.L., Maurice, S., Genetay, I., Binder, A.B.: Polar hydrogen deposits on the Moon. J. Geophys Res. 105, 4175–4195 (2000)CrossRefGoogle Scholar
  18. Feldman, W.C., 11 colleagues: Evidence for water ice near the lunar poles. J. Geophys Res.-Planets 106, 23231–23251 (2001)CrossRefGoogle Scholar
  19. Greenwood, J.P., Itoh, S., Sakamoto, N., Taylor, L.A., Warren, P.H., Yurimoto, H.: Water in Apollo rock samples and the D/H of lunar apatite. Lunar Planet Sci. 41, LPI, Houston, abstract # 2439 (2010)Google Scholar
  20. Grossman, J.J., Mukherjee, N.R., Ryan, J.A.: Microphysical, microchemical and adhesive properties of lunar material III: Gas interaction with lunar material. In: Proc. Lunar Sci. Conf., vol. 3, pp. 2259–2269. LPI, Houston (1972)Google Scholar
  21. Gruen, D.M., Siskind, B., Wright, R.B.: Chemical implantation, isotopic trapping effects, and induced hydroscopicity resulting from 15 keV ion bombardment of sapphire. J. Chem. Phys. 65, 363–378 (1976)CrossRefGoogle Scholar
  22. Guseva, M.I., Martynenko, Y.V.: Radiation blistering. Physics-Uspekhi (Advances in Physical Sciences) 24, 996–1007 (1981)Google Scholar
  23. Hapke, B.: Coherent backscatter and the radar characteristics of outer planet satellites. Icarus 88, 407–417 (1990)CrossRefGoogle Scholar
  24. Harmon, J.K., Perillat, P.J., Slade, M.A.: High-resolution radar imaging of Mercury’s north pole. Icarus 149, 1–15 (2001)CrossRefGoogle Scholar
  25. Haskin, L., Warren, P.: Lunar chemistry. In: Heiken, G.H., Vaniman, D.T., French, B.M. (eds.) Lunar Sourcebook, pp. 357–474. Cambridge University Press, New York (1991)Google Scholar
  26. Hibbitts, C.A., Grieves, G.A., Poston, M.J., Dyar, M.D., Alexandrov, A.B., Johnson, M.A., Orlando, T.M.: Thermal stability of water and hydroxyl on the surface of the Moon from temperature-programmed desorption measurements of lunar analog materials. Icarus 213, 64–72 (2011)CrossRefGoogle Scholar
  27. Housley, R.M., Grant, R.W., Paton, N.E.: Origin and characteristics of excess Fe metal in lunar glass welded aggregates. In: Proc Lunar Sci Conf. 4th, pp. 2737–2749. LPI, Houston (1973)Google Scholar
  28. Hutcheon, I.D.: Micrometeorites and solar flare particles in and out of the ecliptic. J. Geophys Res. 80, 4471–4483 (1975)CrossRefGoogle Scholar
  29. Keller, L.P., McKay, D.S.: The nature and origin of rims on lunar soil grains. Geochim Cosmochim Acta 61, 2331–2340 (1997)CrossRefGoogle Scholar
  30. Kramer, G.Y., Besse, S., Dhingra, D., Nettles, J., Klima, R., Garrick-Bethell, I., Clark, R.N., Combe, J.-P., Head, J.W., Taylor, L.A., Pieters, C.M., Boardman, J., McCord, T.B.: M3 spectral analysis of lunar swirls and the link between optical maturation and surface hydroxyl formation at magnetic anomalies. J. Geophys Res. 116 (2011) (in Press), doi:10.1029/2010JE00Google Scholar
  31. Lawrence, D.J., Feldman, W.C., Elphic, R.C., Hagerty, J.J., Maurice, S., McKinney, G.W., Prettyman, T.H.: Improved modeling of Lunar Prospector neutron spectrometer data: Implications for hydrogen deposits at the lunar poles. J. Geophys Res. 111, E08001 (2006)CrossRefGoogle Scholar
  32. Lee, R.W.: Diffusion of hydrogen in natural and synthetic fused qurtz. J. Chem. Phys. 38, 448–455 (1963)CrossRefGoogle Scholar
  33. Leich, D.A., Tombrello, T.A., Burnett, D.S.: The depth of distribution of hydrogen in lunar material. Lunar Sci. 4, 463–465 (1973) (abstract) Google Scholar
  34. Lord, H.C.: Hydrogen and helium implantation into olivine and enstatite: Retention coefficients, saturation concentrations, and temperature-release profiles. J. Geoph. Res. 73, 5271–5280 (1968)CrossRefGoogle Scholar
  35. Mattern, P.L., Thomas, G.J., Bauer, W.: Hydrogen and helium implantation in vitreous silica. J. Vac. Sci. Technol. 13, 430–436 (1976)CrossRefGoogle Scholar
  36. McCord, T.B., Taylor, L.A., Combe, J.P., Kramer, G., Pieters, C.M., Sunshine, J.M., Clark, R.N.: Sources and physical processes responsible for OH/H2O in the lunar soil as revealed by the Moon Mineralogy Mapper (M3). J. Geophys. Res. 116 (2011), doi:10.1029/2010JE003711Google Scholar
  37. McCubbin, F.M., Steele, A., Nekvasil, H., Schnieders, A., Rose, T., Fries, M.: Detection of structurally bound hydroxyl in apatite from Apollo mare basalt 15058, 128. Lunar Planet. Sci 42, LPI, Houston, abstract #2468 (2010)Google Scholar
  38. McKay, D.S., Heiken, G., Basu, A., Blanford, G., Simon, S., Reedy, R., French, B.M., Papike, J.: The lunar regolith. In: Heiken, G.H., Vaniman, D.T., French, B.M. (eds.) Lunar Sourcebook, pp. 285–356. Cambridge University Press, New York (1991)Google Scholar
  39. Mitrofanov, I.G., 28 co-authors: Neutron mapping of the lunar south pole using the LRO neutron detector experiment LEND. Science 330, 483–486 (2010)Google Scholar
  40. Mitrofanov, I.G., 15 co-athours: Neutron suppression regions at lunar poles as local areas of water-rich permafrost. Lunar Planet. Sci. 42, LPI, Houston, abstract #1787 (2011)Google Scholar
  41. Moulson, J., Roberts, J.P.: Water in silica glass. Trans. Brit. Ceramic Soc. 59, 388–394 (1960)Google Scholar
  42. Nozette, S., Lichtenberg, C., Spudis, P., Bonner, R., Ort, W., Malaret, E., Robinson, M., Shoemaker, E.: The Clementine bistatic radar experiment. Science 274, 1495–1498 (1996)CrossRefGoogle Scholar
  43. Peri, J.B., Hannan, R.B.: Surface hydroxyl groups on γ-alumina. J. Phys. Chem. 64, 1526–1530 (1960)CrossRefGoogle Scholar
  44. Pieters, C.M., 28 colleagues: Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1. Science 326, 568–572 (2009)CrossRefGoogle Scholar
  45. Rivkin, A.S., Howell, E.S., Britt, D.T., Lebovsky, L.A., Nolan, M.C., Branston, D.D.: 3μm photometric survey of M- and E-class asteroids. Icarus 117, 90–100 (1995)CrossRefGoogle Scholar
  46. Roth, J.: Chemical sputtering. In: Behrisch, R. (ed.) Sputtering by Particle Bombardment II, pp. 91–146. Springer, New York (1983)CrossRefGoogle Scholar
  47. Saal, A.E., Hauri, E.H., Cascio, M.L., Van Orman, J.A., Rutherford, M.C., Cooper, R.F.: Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 454, 192–195 (2008)CrossRefGoogle Scholar
  48. Scherzer, B.M.U.: Development of surface topography due to gas ion implantation. In: Behrisch, R. (ed.) Sputtering by Particle Bombardment II, pp. 271–356. Springer, New York (1983)CrossRefGoogle Scholar
  49. Shkuratov, Y.G., Starukhina, L.V., Hoffmann, H., Arnold, G.: A model of spectral albedo of particulate surfaces: Implications for optical properties of the Moon. Icarus 137, 235–246 (1999)CrossRefGoogle Scholar
  50. Shoemaker, E.M., Hait, M.H., Swann, G.A., Schleicher, D.L., Schaber, G.G., Sutton, R.L., Dahlem, D.H., Goddard, E.N., Waters, A.C.: Origin of the lunar regolith at Tranquility Base. In: Proc. Apollo 11 Lunar Sci. Conf., LPI, Houston, pp. 2399–2412 (1970)Google Scholar
  51. Siegler, M.A., Bills, B.G., Paige, D.A.: Effects of orbital evolution on lunar ice stability. J. Geophys. Res. 116, E03010 (2011), doi:10.1029/2010JE003652Google Scholar
  52. Simpson, R.A., Tyler, G.L.: Reanalysis of Clementine bistatic radar data from the lunar South Pole. J. Geoph. Res. 104, 3845–3862 (1999)CrossRefGoogle Scholar
  53. Siskind, B., Gruen, D.M., Varma, K.: Chemical implantation of 10 keV H +  and D +  in rutile. J. Vac. Sci. Technol. 14, 537–542 (1977)CrossRefGoogle Scholar
  54. Slade, M.A., Butler, B.J., Muhleman, D.O.: Mercury radar imaging: Evidence for polar ice. Science 258, 635–640 (1992)CrossRefGoogle Scholar
  55. Stacy, N.J.S., Campbell, D.B., Ford, P.G.: Arecibo radar mapping of the lunar poles: A search for ice deposits. Science 276, 1527–1530 (1997)CrossRefGoogle Scholar
  56. Starukhina, L.V.: Excess hydrogen on the lunar poles: water ice or solar wind induced OH? (abstract). In: The 3rd International Conference on the Exploration and Utilization of the Moon, Moscow. Russian Acad. Sci., p. 38 (1998a)Google Scholar
  57. Starukhina, L.V.: Estimation of solar wind induced 2.9 μm absorption in lunar regolith: implication for the problem of water detection on the lunar poles (abstract). In: The 3rd International Conference on the Exploration and Utilization of the Moon, Moscow. Russian Acad. Sci., p. 39 (1998b)Google Scholar
  58. Starukhina, L.V.: The excess hydrogen on the lunar poles: water ice or chemically trapped solar wind? Lunar Planet. Sci. 30, abstract #1093 (1999a)Google Scholar
  59. Starukhina, L.V.: Estimation of 3μm light absorption by hydroxyl of solar wind origin: implication for the problem of water detection on the surfaces of atmosphereless celestial bodies. Lunar Planet. Sci. 30, LPI, Houston, abstract #1094 (1999b)Google Scholar
  60. Starukhina, L.V.: Light absorption by radiation-induced hydroxyl ions and the problem of finding water on atmosphereless celestial bodies. Solar System Research 33, 291–295 (1999c)Google Scholar
  61. Starukhina, L.V.: High radar response of Mercury polar regions: water ice or cold silicates? Lunar Planet. Sci. 31, LPI, Houston, abstract # 1301 (2000a)Google Scholar
  62. Starukhina, L.V.: On the origin of excess hydrogen at the lunar poles. Solar System Res. 34, 215–219 (2000b)Google Scholar
  63. Starukhina, L.V.: Water detection on atmosphereless celestial bodies: Alternative explanations of the observations. J. Geophys. Res.-Planets 106, 14701–14710 (2001)CrossRefGoogle Scholar
  64. Starukhina, L.V.: 3μm light absorption by hydroxyl of solar wind origin and the prospects of water detection on asteroids with NIR spectroscopy. In: Proc. ACM 2002, Berlin, pp. 513–516 (2002)Google Scholar
  65. Starukhina, L.V.: Computer Simulation of Sputtering of Lunar Regolith by Solar Wind Protons: Contribution to Alteration of Surface Composition and to Hydrogen Flux at the Lunar Poles. Solar System Research 37, 36–50 (2003)CrossRefGoogle Scholar
  66. Starukhina, L.V.: Polar regions of the Moon as a potential repository of solar-wind-implanted gases. Adv. Space Res. 37, 50–58 (2006)CrossRefGoogle Scholar
  67. Starukhina, L.V.: Ice on the moon and Mercury: reanalysis of the origin and survival conditions. Lunar and Planetary Science 39, LPI, Houston, abstract #1141 (2008)Google Scholar
  68. Starukhina, L.V.: Depth of 3μm lunar absorption bands: the effect of surface brightness. A Wet vs. Dry Moon: Exploring Volatile Reservoirs and Implications for the Evolution of the Moon and Future Exploration, LPI, Houston, Abstr. #6002 (2011)Google Scholar
  69. Starukhina, L.V., Shkuratov, Y.G.: A model for spectral dependence of albedo for multicomponent regolith-like surfaces. Solar System Res. 30, 258–264 (1996)Google Scholar
  70. Starukhina, L.V., Shkuratov, Y.G.: The lunar poles: water ice or chemically trapped hydrogen? Icarus 147, 585–587 (2000)CrossRefGoogle Scholar
  71. Starukhina, L.V., Shkuratov, Y.G.: Swirls on the Moon and Mercury: meteoroid swarm encounters as a formation mechanism. Icarus 167, 136–147 (2004)CrossRefGoogle Scholar
  72. Starukhina, L.V., Shkuratov, Y.G.: Simulation of 3μm absorption band in lunar spectra: water or solar wind induced hydroxyl? Lunar and Planetary Science 41, LPI, Houston, abstract #1385 (2010)Google Scholar
  73. Stern, S.A.: The lunar atmosphere: History, status, current problems, and context. Rev. Geophys. 37, 453–491 (1999)CrossRefGoogle Scholar
  74. Sunshine, J.M., Farnham, T.L., Feaga, L.M., Groussin, O., Merlin, F., Milliken, R.E., A’Hearn, M.F.: Temporal and spatial variability of lunar hydration as observed by the deep impact spacecraft. Science 326, 565–568 (2009)CrossRefGoogle Scholar
  75. Taylor, L.A., Rossman, G.R., Qi, Q.: Where has all the lunar water gone? Lunar Planet. Sci. 26, LPI, Houston, 1399–1400 (1995)Google Scholar
  76. Vasavada, A.R., Paige, D.A., Wood, E.S.: Near-surface temperatures on Mercury and the Moon and the stability of polar ice deposits. Icarus 141, 179–193 (1999)CrossRefGoogle Scholar
  77. Watson, K., Murray, B.C., Brown, H.: The behavior of volatiles on the lunar surface. J. Geophys. Res. 66, 3033–3045 (1961)CrossRefGoogle Scholar
  78. Zeller, E.J., Ronca, L.B., Levy, P.W.: Proton-induced hydroxyl formation on the lunar surface. J. Geophys. Res. 71, 4855–4860 (1966)Google Scholar
  79. Zent, A.P., Ichimura, A.I., McCord, T.B., Taylor, L.A.: Production of OH/H2O in lunar samples via proton bombardment. Lunar Planet. Sci. 41, LPI, Houston, abstract # 2665 (2010)Google Scholar
  80. Ziegler, J.F., Biersack, J.P., Littmark, U.: The Stopping and Range of Ions in Solids. Pergamon Press, New York (1996)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Larissa Starukhina
    • 1
  1. 1.Astronomical Institute of Kharkov National UniversityKharkivUkraine

Personalised recommendations