Moon pp 661-702 | Cite as

Moon Dune – Bacillithic Cratertecture

  • Magnus Larsson
  • Alex Kaiser


The potential for microbial life to adapt and evolve in environments beyond its planet of origin should be assessed. Little is currently known regarding the consequences when earthly microbial life is transported into space or to other planets, where the environment is very different from that of Earth. The findings from such studies will determine whether life on Earth is strictly a local planetary phenomenon or can expand its evolutionary trajectory beyond its place of origin (NASA 2003).


Lunar Surface Lunar Regolith Lunar Soil Lava Tube Crater Cavity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agosto, W., Wickman, J., James, E.: Lunar Cement/Concrete for Orbital Structures. In: Proceedings of SPACE 1988; Engineering, Construction, and Operations in Space, pp. 157–168. American Society of Civil Engineers, New York (1988)Google Scholar
  2. Amato, J.: Dust: A History of the Small and the Invisible, p. 3. University of California Press, Berkeley (2000)Google Scholar
  3. Amos, J.: Moon’s water is useful resource, says Nasa,, October 22 (2010), (Viewed April 13, 2011)
  4. Asimov, I.: The Endochronic Properties of Resublimated Thiotimoline (Astounding Science Fiction, Street & Smith) (1948)Google Scholar
  5. Atkins, P.W.: The Periodic Kingdom. HarperCollins Publishers, Inc. (1995) ISBN 0-465-07265-8Google Scholar
  6. AU/CEN-SAD (2009) Plan of Action for the Implementation of the Great Green Wall of the Sahara and Sahel Initiative. Draft for submission to the AU Executive Council. Addis Ababa, Ethiopia, February 1–3 (2009)Google Scholar
  7. Ball, P.: The Ingredients: A Guided Tour of the Elements. Oxford University Press (2002)Google Scholar
  8. Ball, P.: Branches, p. 61. Oxford University Press, Oxford (2009)zbMATHGoogle Scholar
  9. Bennett, D.F.H.: Concrete: the material – Lunar concrete. Innovations in concrete, pp. 86–88. Thomas Telford Books (2002)Google Scholar
  10. Beyer, L.A.: Lunarcrete – A Novel Approach to Extraterrestrial Construction. In: Faughnan, B., Maryniak, G. (eds.) Proceedings of the Seventh Princeton/AIAA/SSI Conference on Space Manufacturing 5: Engineering with Lunar and Asterodial Materials, May 8-11, p. 172. American Institute of Aeronautics and Astronautics (1985)Google Scholar
  11. Bini, D.: A New Pneumatic Technique for the Construction of Thin Shells. In: Proceedings of the First International Association for Shell Structures (LASS), International Colloquium on Pneumatic Structures, University of Stuttgart, Germany (May 1967)Google Scholar
  12. Bodiford, M., Fiske, M., McGregor, W., Pope, R.: In Situ Resource-Based Lunar and Martian Habitat Structures Development at NASAMSFC. In: Proceedings: AIAA 1st Exploration Conference on AIAA Paper AIAA-2005-2704, Orlando, FL (January 2005)Google Scholar
  13. Bodiford, M., Burks, K., Perry, M., Cooper, R., Fiske, M.: Lunar In Situ Materials-Based Habitat Technology Development Efforts at NASA/MSFC. In: NASA Marshall Space Flight Center, Earth & Space 2006: Engineering, Construction, and Operations in Challenging Environment, pp. 1–8 (2006), doi:10.1061/40830(188)70Google Scholar
  14. Boston, P.J.: Location, Location, Location! Lava Caves on Mars for Habitat, Resources, and the Search for Life. Journal of Cosmology 12, 3957–3979 (2010)Google Scholar
  15. Bourzac, K.: Software for Programming Microbes. Technology Review (January 5, 2011), (viewed April 13, 2011)
  16. Brown, I.I., Sarkisova, S.A., Garrison, D.H., Thomas-Keprta, K., Allen, C.C., Jones, J.A., Galindo Jr. C., McKay, D.S.: Bio-Weathering of Lunar and Martian Rocks by Cyanobacteria: A Resource for Moon and Mars Exploration. Lunar and Planetary Science XXXIX (2008), (viewed April 13, 2011)
  17. Brown, R.B., Klaus, D.M., Todd, P.: Buoyancy-driven fluid flow generated by bacterial metabolism and its proposed relationship to increased bacterial growth in space (2005), (viewed April 13, 2011)
  18. Busbea, L.: Topologies: The Urban Utopia in France, pp. 1960–1970. The MIT Press, Cambridge (2007)Google Scholar
  19. Buseck, P.R., Tsipursky, S.J., Hettich, R.: Fullerenes from the Geological Environment. Science 257(5067), 215–217 (1992)CrossRefGoogle Scholar
  20. Cami, J., Bernard-Salas, J., Peeters, E., Malek, S.E.: Detection of C60 and C70 in a Young Planetary Nebula. Science 329, 1180 (2010)CrossRefGoogle Scholar
  21. Carey, B.: Wild Things: The Most Extreme Creatures (article in Live Science), February 7 (2005), (viewed April 13, 2011)
  22. Carr, C.E., Newman, D.J.: Characterization of a lower-body exoskeleton for simulation of space-suited locomotion. Acta Astronautica 62, 308–323 (2008)CrossRefGoogle Scholar
  23. Cathcart, R.B.: Anthropic Rock: a brief history. History of Geo and Space Sciences 2, 57–74 (2011)CrossRefGoogle Scholar
  24. Cavicchioli, R.: Extremophiles and the search for extraterrestrial life. Astrobiology 2(3), 281–292 (2002)CrossRefGoogle Scholar
  25. Ceccanti, F., Dini, E., De Kestelier, X., Colla, V., Pambaguian, L.: 3D Printing Technology for a Moon Outpost Exploiting Lunar Soil. In: 61st International Astronautical Congress, Prague, CZ, IAC-10-D3.3.5 (2010) Google Scholar
  26. Choi, C.: Space Colonists Could Use Bacteria to Mine Minerals on Mars and the Moon. Scientific American (September 10, 2010), (viewed April 13, 2011)
  27. Chow, P.Y., Lin, T.Y.: Structural engineering’s concept of lunar structures. ASCE J. Aerosp. Eng. 2(1), 1–9 (1989)MathSciNetCrossRefGoogle Scholar
  28. Clarke, A.: Interplanetary Flight – An Introduction to Astronautics, ch. 10. Harper & Brothers, New York (1950)Google Scholar
  29. Cohen, M.M., Benaroya, H.: Lunar-Base Structures. In: Howe, A., Sherwood, B. (eds.): Out of This World – The New Field of Space Architecture, pp. 179–204. American Institute of Aeronautics and Astronautics, Reston (2009) Google Scholar
  30. Connor, S.: Cromwell’s moonshot: how one Jacobean scientist tried to kick off the space race, article in The Independent, Sunday, October 10 (2004), (viewed April 13, 2011)
  31. Cook, E.: Roden Crater: The Art & Vision of James Turrell. 1978 – A Year in the Project (1999-2001. Enhanced and refined by Gail Cook, April 2001) (1999), (viewed April 13, 2011)
  32. Daga, A., Daga, M., Wendell, W.: A preliminary assessment of the potential of lava tube-situated lunar base architecture. In: Johnson, S., Wetzel, J. (eds.) Engineering, Construction, and Operations in Space II, pp. 568–577. ASCE, New York (1990)Google Scholar
  33. Dalton, B.P., Roberto, F.F. (eds.): Lunar Regolith Biomining Workshop Report (Report of a Workshop Sponsored by and held at NASA Ames Research Center, Moffett Field, CA, May 5-6, 2007, NASA/CP–2008–214564) (2007) Google Scholar
  34. Danovaro, R., Dell’Anno, A., Pusceddu, A., Gambi, C., Heiner, I., Christensen, R.M.: The first metazoa living in permanently anoxic conditions. BMC Biology 8, 30 (2010)CrossRefGoogle Scholar
  35. DeJong, J.T., Fritzges, M.B., Nüsslein, K.: Microbially Induced Cementation to Control Sand Response to Undrained Shear. Journal of Geotechnical and Geoenvironmental Engineering 132(11), 1381 (2006)CrossRefGoogle Scholar
  36. DeJong, J.T.: Private correspondence with the author (March 12, 2008) Google Scholar
  37. De Weerd, J.F., Kruijff, M., Ockels, W.J.: Search for Eternally Sunlit Areas at the Lunar South Pole from Recent Data: New Indications Found. In: 49th International Astronautical Congress, IAF 98-Q.4.07, Melbourne, September 28-October 2 (1998)Google Scholar
  38. Eckart, P.: The Lunar Base Handbook. In: Larson, W.J. (ed.), McGraw Hill, Montreal (1999)Google Scholar
  39. Eichold, A.: Conceptual Design of a Crater Lunar Base. Society of Automotive Engineers, Paper 961464 (July 1996) Google Scholar
  40. Encyclopædia Britannica, “fullerene” (Encyclopædia Britannica Online) (2011), (viewed April 13, 2011)
  41. Fritz, I., Kreppel, S., Crosby, K.M., Martin, E., Pennington, C., Frye, B., Monegato, J., Agui, J.: Repose Angles of Lunar Mare Simulants in Microgravity (2009), (viewed April 13, 2011)
  42. Fuller, R.B.: Critical Path, pp. xxxiv–xxxv. St. Martin’s Press, New York (1981) Google Scholar
  43. Glavin, D.P., Dworkin, J.P., Lupisella, M., Kminek, G., Rummel, J.D.: In Situ Biological Contamination studies of the Moon: Implications for Future Planetary Protection and Life Detection Missions (2010), (viewed April 13, 2011)
  44. Gracia, V., Casanova, I.: Sulfur Concrete: A Viable Alternative for Lunar Construction. In: Proceedings of the ASCE, SPACE 1998 Engineering, Construction, and Operations in Space, New York, pp. 585–591 (1998)Google Scholar
  45. Grainger, A.: The Threatening Desert – Controlling Desertification. Earthscan, London (1990)Google Scholar
  46. Hall, E.T.: The Hidden Dimension. Doubleday, Garden City (1966)Google Scholar
  47. Hawking, S.: NASA’s 50th Anniversary Lecture (NASA, Monday, April 28, 2008), (viewed April 13, 2011)
  48. Haynes, R.H.: Ethics and planetary engineering. 1. Ecce ecopoiesis: Playing God on Mars. In: Macniven, D. (ed.) Moral Expertise, pp. 161–183. Routledge, London (1990)Google Scholar
  49. Heiken, G.H., Vaniman, D.T., French, B.M. (eds.): The Lunar Sourcebook: A User’s Guide to the Moon. Cambridge University Press, New York (1991)Google Scholar
  50. Heinlein, R.A.: The Moon is a Harsh Mistress. G.P. Putnam’s Sons, New York (1966),,%20Robert%20A%20-%20The%20Moon%20is%20a%20Harsh%20Mistress.pdf (viewed April 13, 2011)Google Scholar
  51. Herbert, G.W.: Lunar concrete. In: Yarvin, N. (ed.) Archives: Space: Science, Exploration (1992), (viewed April 13, 2011)
  52. Highfield, R.: Colonies in space may be only hope, says Hawking: The Telegraph, London (newspaper interview, October 15, 2001), (viewed April 13, 2011)
  53. Hodgson, E.: CP 00-02 Phase I – A Chameleon Suit to Liberate Human Exploration of Space Environments. NASA Institute for Advanced Concepts (2001)Google Scholar
  54. Hogan, C.: Bacteria. In: Sand, D., Cleveland, C.J. (eds.) Encyclopedia of Earth. National Council for Science and the Environment, Washington DC (2010)Google Scholar
  55. Hooper, R.: Need a Building? Just Add Water (2005), (viewed April 13, 2011)
  56. Horiguchi, T., Saeki, N., Yoneda, T., Hoshi, T., Lin, T.D.: Behavior of Simulated Lunar Cement Mortar in Vacuum Environment. In: Space 1998, pp. 571–576. American Society of Civil Engineers, Reston (1998)Google Scholar
  57. Horneck, G., Bucker, H., Reitz, G.: Long-term survival of bacterial spores in space. Advanced Space Research 14, 41–45 (1994)CrossRefGoogle Scholar
  58. Horneck, G., Klaus, D.M., Mancinelli, R.L.: Space Microbiology. Microbiology and Molecular Biology Reviews 74(1), 121–156 (2010)CrossRefGoogle Scholar
  59. Hsu, H., Baruh, H., Benaroya, H.: In-Situ Resource Utilization in a Lunar Environment (Rutgers University NASA-SHARP, at GISS) (2005)Google Scholar
  60. Ismail, M.A., Joer, H.A., Randolph, M.F., Kucharski, E.: Cementation of porous materials using calcite precipitation. University of Western Australia Geomechanics Group, Geotech. Rep. G1422 (1999a) Google Scholar
  61. Ismail, M.A., Joer, H.A., Randolph, M.F., Kucharski, E.: CIPS, a novel cementing technique for soils. University of Western Australia Geomechanics Group, Geotech. Rep. G1406 (1999b) Google Scholar
  62. Ivanov, V., Chu, J.: Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev. Environ. Sci. Biotechnol. 7, 139–153 (2008)CrossRefGoogle Scholar
  63. Jablonski, A.M., Ogde, K.A.: A Review of Technical Requirements for Lunar Structures. In: International Lunar Conference 2005 (2005), (viewed April 13, 2011)
  64. Jaggard, V.: NASA’s O/OREOS Dunking Bacteria in Space Rays (National Geographic News Watch article, November 23, 2010), (viewed April 13, 2011)
  65. Jardine, L.: Monuments and microscopes: scientific thinking on a grand scale in the early. Royal Society, Notes and Records Roy. Soc. London 55, 289–308 (2001)CrossRefGoogle Scholar
  66. Jones, E.: Apollo 12 Lunar Surface Journal. Surveyor Crater and Surveyor III, Corrected Transcript and Commentary: NASA (1995), (search for “little bacteria”), (viewed April 13, 2011)
  67. Kelly, K.: Out of Control: The New Biology of Machines, Social Systems and the Economic World. Addison Wesley/Perseus Books, Reading/New York (1994/1995)Google Scholar
  68. Khalili, E.N.: Lunar Strcutures Generated and Shielded with On-Site Materials. Journal of Aerospace Engineering 2(3), 119–129 (1989)CrossRefGoogle Scholar
  69. Khoshnevis, B., Bodiford, M., Burks, K., Ethridge, E., Tucker, D., Kim, W., Toutanji, H., Fiske, M.: Lunar Contour Crafting – A Novel Technique for ISRU-Based Habitat Development. In: Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Paper AIAA-2005-0538 (January 2005)Google Scholar
  70. Kozyrovska, N., Zaetz, I., Lytvynenko, T., Voznyuk, T., Maria, M., Rogutskyy, I., Mytrokhyn, O., Lukashov, D., Mashkovska, S., Foing, B.: Microbial Community for Growing Pioneer Plants in a Lunar Greenhouse (2005), (viewed April 13, 2011)
  71. Kozyrovska, N.O., Zaetz, I.E., Burlak, O.P., Rogutskyy, I.S., Mytrokhyn, O.V., Mashkovska, S.P., Foing, B.H.: The Conception of Growing First Generation-Plants in Lunar Greenhouses. Космічна наука і технологія 16(2), 70–74 (2010)Google Scholar
  72. Kubrick, S.: Dr. Strangelove (Columbia Pictures, 94 minutes) (1964) Google Scholar
  73. Kubrick, S.: 2001: A Space Odyssey (MGM, 161 minutes) (1968)Google Scholar
  74. Kucharski, E.S., Winchester, W., Leeming, W.A., Cord-Ruwisch, R., Muir, C., Banjup, W.A., Whiffin, V.S., Al-Thawadi, S., Mutlaq, J.: Microbial biocementation. Patent Application WO/2006/066326; International Application No.PCT/AU2005/001927 (2005) Google Scholar
  75. Kurzweil, R.: The Age of Intelligent Machines. MIT Press, Massachusetts (1990)Google Scholar
  76. Kurzweil, R.: How My Predictions Are Fairing (October 2010), (viewed April 13, 2011)
  77. Langlais, D.M., Saulnier, D.P.: Reusable, Pressurized Dome for Lunar Construction in Space. In: Chua, K.M., et al. (eds.) American Society of Civil Engineers, Albuquerque, New Mexico, pp. 791–797 (2000)Google Scholar
  78. Larsson, M.: Dune – Arenaceous Anti-Desertification Architecture. In: Badescu, V., Cathcart, R. (eds.) Macro-engineering Seawater in Unique Environments, Environmental Science and Engineering. Springer, Berlin (2011)Google Scholar
  79. Le Corbusier: Vers Une Architecture (English version, Toward an Architecture. Translated by John Goodman, Getty Research Institute, Los Angeles (2007); first English translation (Towards a New Architecture 1927) (1923) Google Scholar
  80. Le Metayer-Levrel, G., Castanier, S., Orial, G., Loubiere, J.F., Perthuisot, J.P.: Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sedimentary Geology 126, 25–34 (1999)CrossRefGoogle Scholar
  81. Leonard, R., Johnson, S.: Sulfur-Based Construction Materials for Lunar Construction. In: Proceedings of the ASCE, SPACE 1988 Engineering, Construction, and Operations in Space, New York, pp. 1295–1307 (1988)Google Scholar
  82. Lin, T.D.: Concrete for Lunar Base Construction. Concrete International (ACI) 9(7) (1987)Google Scholar
  83. Lin, T.D., Love, H., Stark, D.: Physical Properties of Concrete Made with Apollo 16 Lunar Soil Sample. In: Faughnan, B., Maryniak, G. (eds.) Space Manufacturing 6: Proceedings of the Eighth Princeton/AIAA/SSI Conference, May 6-9, pp. 361–366. American Institute of Aeronautics and Astronautics (1987)Google Scholar
  84. Lovelock, J.E.: The Ages of Gaia, p. 123. W.W. Norton and Company (1988)Google Scholar
  85. Lukić, B.: Nonobject. MIT Press (2010)Google Scholar
  86. Lytvynenko, T., Zaetz, I., Voznyuk, T., Kovalchuk, M., Rogutskyy, I., Mytrokhyn, O., Lukashov, D., Estrella-Liopis, V., Borodinova, T., Mashkovska, S., Foing, B., Kordyum, V., Kozyrovska, N.: A rationally assembled microbial community for growing Tagetes Patula L. in a lunar greenhouse. Research in Microbiology 157, 87–92 (2005)CrossRefGoogle Scholar
  87. Manacorda, F., Yedgar, A.: Radical Nature: Art and Architecture for a Changing Planet, 1969-2009 (London, Koenig Books, co-edition with Barbican Art Gallery) (2009) Google Scholar
  88. Manaugh, G.: Mineral Kinships, introduction to Maisel D, Library of Dust, p. 25. Chronicle Books, San Fransisco (2008)Google Scholar
  89. Manaugh, G.: Sand/Stone BLDGBLOG (April 19, 2009), (viewed April 13, 2011)
  90. Mangels, J.: Coping with a lunar dust-up (The Seattle Times) (2007), (viewed April 13, 2011)
  91. McAlpine, K.: For self-healing concrete, just add bacteria and food, New Scientist (September 1, 2010), (viewed April 13, 2011)
  92. McKay, M.F., McKay, D.S., Duke, M.B.: Space Resources. Overview (NASA SP-509, Lyndon B. Johnson Space Center, Houston, Texas) (1992), (viewed April 13, 2011)
  93. Merrill, G.P.: Rocks, rock-weathering and soils. MacMillan Company, New York (1897)Google Scholar
  94. Meyer, C.: Lunar Regolith. NASA Lunar Petrographic Educational Thin Section Set, 46–48 (2003), (viewed April 13, 2011)
  95. Miller, J., Coit, D.: Lunar Property and Mining Rights (2008), (viewed April 13, 2011)
  96. Namba, H., Ishikawa, N., Kanamori, H., Okada, T.: Concrete Production Method for Construction of Lunar Bases. In: Proceedings of the ASCE Space 1988 Engineering, Construction, and Operations in Space, pp. 169–177. American Society of Civil Engineers, New York (1988)Google Scholar
  97. NASA, Nasa Roadmap, Goal 6: Understand the principles that will shape the future of life, both on Earth and beyond (Responsible NASA official Lynn Rothschield) (2003), (viewed April 13, 2011)
  98. NASA, In-Situ Resource Utilization (NASA, Ames Research Center, page editor: Dino J, NASA official: Dunbar B) (March 29, 2008) (2008), (viewed April 13, 2011)
  99. Nemati, M., Voordouw, G.: Modification of porous media permeability, using calcium carbonate produced enzymatically in situ. Enzyme and Microbial Technology 33, 635 (2003)CrossRefGoogle Scholar
  100. North, G.: Observing the Moon: The Modern Astronomer’s Guide, p. 37. Cambridge University Press, Cambridge (2000)Google Scholar
  101. Olsson-Francis, K., Cockell, C.S.: Use of cyanobacteria for in-situ resource use in space applications. Planetary and Space Science 58(10), 1279–1285 (2010a)CrossRefGoogle Scholar
  102. Olsson-Francis, K., Cockell, C.S.: Experimental methods for studying microbial survival in extraterrestrial environments. Journal of Microbiological Methods 80, 1–13 (2010b)CrossRefGoogle Scholar
  103. Omar, H.A., Issa, M.: Production of Lunar Concrete Using Molten Sulfur. In: Galloway, R.G., Lokaj, S. (eds.) Proceedings of the 4th International Conference on Engineering, Construction, and Operations in Space IV: Space 1994, Albuquerque, New Mexico, February 26-March 3, pp. 952–959. American Society of Civil Engineers, New York (1994)Google Scholar
  104. Phillips, T.: The Mysterious Smell of Moondust (NASA Science, Science News) (2006), (viewed April 13, 2011)
  105. Ruess, F., Kuhlmann, U., Benaroya, H.: Structural Design of a Lunar Base. In: Maji, A., Malla, R.B. (eds.) Engineering, Construction, and Operations in Challenging Environments, pp. 17–23. ASCE, Houston (2004)Google Scholar
  106. Ruess, F., Schaenzlin, J., Benaroya, H.: Structural Design of a Lunar Habitat. Journal of Aerospace Engineering 19(3), 138 (2006)CrossRefGoogle Scholar
  107. Sagan, C.: Cosmos: Abacus, London (2011 reprint of 1995 edition), p. 347 (1980) Google Scholar
  108. Seybold, C.C.: Characteristics of the Lunar Environment (1995), (viewed April 13, 2011)
  109. Shafirovich, E., White, C., Alvarez, F.: In-Situ Production of Construction Materials by Combustion of Regolith/Aluminum and Regolith/Magnesium Mixtures. Space Manufacturing, Center for Space Exploration Technologies Research, Mechanical Engineering Department, The University of Texas at El Paso, October 29-31, vol. 14 (2010)Google Scholar
  110. Stevens, A.: Man’s furthest aloft. National Geographic Magazine 69:59, 693–712 (1936)Google Scholar
  111. Stone, E.C., Lindsley, D.H., Pigott, V., Harbottle, G., Ford, M.T.: From Shifting Silt to Solid Stone: The Manufacture of Synthetic Basalt in Ancient Mesopotamia. Science 280, 2091–2093 (1998)CrossRefGoogle Scholar
  112. Strenski, D., Yankee, S., Holasek, R., Pletka, B., Hellawell, A.: Brick Design for the Lunar Surface. In: Proceedings of the ASCE SPACE 1990 Engineering, Construction, and Operations in Space, pp. 458–467. American Society of Civil Engineers, New York (1990)Google Scholar
  113. Sullivan, T.A.: Process Engineering Concerns in the Lunar Environment (AAIA Paper 90-3753) (September 1990) Google Scholar
  114. Swift, J.: Travels into Several Remote Nations of the World. In: Gulliver, L. (ed.) Four Parts, First a Surgeon, and then a Captain of several Ships (1726) (reprinted edition: Gulliver’s Travels. Penguin Classics, 336 pages (2011), The adamant island can be found in part III)Google Scholar
  115. Tamsir, A., Tabor, J.J., Voigt, C.A.: Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’. Nature 469, 212–215Google Scholar
  116. Taylor, G.J., Neubert, J., Lucey, P., McCulloug, E.: The Uncertain Nature of Polar Lunar Regolith (Space Resources Roundtable VI) (2004), (viewed April 13, 2011)
  117. Taylor, L.A., McKay, D.S.: Beneficiation of lunar rocks and regolith - Concepts and difficulties. In: Article in Proceedings of the 3rd International Conference on Engineering, Construction, and Operations in Space - III: Space 1992, Denver, CO, May 31-June 4, vol. 1, pp. 1058–1069 (1992)Google Scholar
  118. The Engineer. Editorial, Bacteria Help Protect from Quakes: The Engineer (February 23, 2007), (viewed April 8, 2010)
  119. Toklu, Y.C.: Civil Engineering in the Design and Construction of a Lunar Base. In: Chua, K.M., et al. (eds.) Space 2000, pp. 822–834. American Society of Civil Engineers, Albuquerque (2000)Google Scholar
  120. Toutanji, H., Fiske, M., Bodiford, M.: Development of Lunar “Concrete” for Habitat Structures. In: Proceedings of 10th ASCE Aerospace Division International Conference on Engineering, Construction and Operation in Challenging Envirorments: Earth & Space 2006, League City, TX (March 2006)Google Scholar
  121. UN, World Population to 2300 (United Nations Department of Economic and Social Affairs/Population Division) (2004), (viewed April 13, 2011); The quoted figure is the “high scenario,” based on extrapolations of current trends. The report itself states that “Any demographic projections, if they go 100, 200, or 300 years into the future, are little more than guesses,” a fact that is further shown by an experiment in which the researchers held the total fertility indefinitely at its level between 1995 and 2000, producing “an unrealistic, and almost unimaginable world population of 134 trillion by 2300”
  122. UNESCO, Examination of nomination of Natural, mixed and cultural properties to the World Heritage List - Fujian Tulou (CHINA) (200 Decision 32COM 8B.20) (2008), (viewed April 13, 2011)
  123. Vogler, A., Vittori, A.: Space Architecture for the Mother Ship: Bringing It Home. In: Scott Howe, A., Sherwood, B. (eds.) Out of This World: The New Field of Space Architecture. AIAA, Reston (2009)Google Scholar
  124. Welland, M.: Sand – The Never-Ending Story. University of California Press, Berkely (2009)Google Scholar
  125. Weston, R.: Materials, Form and Architecture. Laurence King Publishing, London (2008), (1st edn. 2003)Google Scholar
  126. Wheeler, R.M., Mackowiak, C.L., Stutteb, G.W., Sagerb, J.C., Yoriob, N.C., Ruffeb, L.M., Fortson, R.E., Dreschelb, T.W., Knottb, W.M., Coreyc, K.A.: NASA’s biomass production chamber: A testbed for bioregenerative life support studies. Advances in Space Research 18(4-5), 215–224 (1996)CrossRefGoogle Scholar
  127. Whiffin, V.S., van Paassen, L.A., Harkes, M.P.: Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal 24(5), 417–423 (2007)CrossRefGoogle Scholar
  128. Whitman, W., Coleman, D., Wiebe, W.: Prokaryotes: the unseen majority. Proceedings of the National Academy of Sciences of the United States of America 95(12), 6578–6583 (1998)CrossRefGoogle Scholar
  129. Wilson, J.W., Ott, C.M., Hönerzu Bentrup, K., Ramamurthy, R., Quick, L., Porwollik, S., Cheng, P., McClelland, M., Tsaprailis, G., Radabaugh, T., Hunt, A., Fernandez, D., Richter, E., Shah, M., Kilcoyne, M., Joshi, L., Nelman-Gonzalez, M., Hing, S., Parra, M., Dumars, P., Norwood, K., Bober, R., Devich, J., Ruggles, A., Goulart, C., Rupert, M., Stodieck, L., Stafford, P., Catella, L., Schurr, M.J., Buchanan, K., Morici, L., McCracken, J., Allen, P., Baker-Coleman, C., Hammond, T., Vogel, J., Nelson, R., Pierson, D.L., Stefanyshyn-Piper, H.M., Nickerson, C.A.: Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. PNAS 104(41), 16299–16304 (2007)CrossRefGoogle Scholar
  130. Wolfe-Simon, F., Switzer Blum, J., Kulp, T.R., Gordon, G.W., Hoeft, S.E., Pett-Ridge, J., Stolz, J.F., Webb, S.M., Weber, P.K., Davies, P.C.W., Anbar, A.D., Oremland, R.S.: A Bacterium That Can Grow by Using Arsenic Instead of Phosphorus. Science (2010), doi:10.1126/science.1197258Google Scholar
  131. Wood, C.A., Andersson, L.: New morphometric data for fresh lunar craters. In: Proceedings of 9th Lunar and Planetary Science Conference, Houston, Tex., March 13-17, pp. 3669–3689. Pergamon Press, Inc., New York (1978) (A79-39253 16-91)Google Scholar
  132. Yong, J., Berger, R.: Cement-Based Materials for Planetary Materials. In: Johnson, S. (ed.) SPACE 1988 Engineering Construction, and Operations in Space. American Society of Civil Engineers, New York (1988)Google Scholar
  133. Zeitlin, C., Guetersloh, S.B., Heilbronn, L.H., Miller, J., Shavers, M.: Radiation tests of the extravehicular mobility unit space suit for the international space station using energetic protons. Radiat. Msmts. 41(9-10), 1158–1172 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Magnus Larsson
    • 1
  • Alex Kaiser
    • 1
  1. 1.Species of SpacesLondonUK

Personalised recommendations