Moon pp 367-376 | Cite as

Photovoltaic Power Generation on the Moon: Problems and Prospects

  • T. E. Girish
  • S. Aranya


Photovoltaic power is important for the current and future Lunar space missions. Alternating fortnights of bright sunshine offers a clean and unlimited energy resource on the Moon. Apollo (Bates and Fang 2001) and Lunokhod (Torchynska and Polupan 2002) missions conducted earliest solar cell experiments on the lunar surface during the 1970’s. Space solar cell technology has significantly evolved during these forty years (Markvart and Castner 2003; Partain and Fraas 2010). Keeping in mind the recent renewed interest in lunar studies (Sridharan et al. 2010) the advantages and disadvantages of photovoltaic power generation on the Moon will be discussed in this chapter which is a modified version of our earlier paper (Girish and Aranya 2010).


Solar Cell Lunar Surface Solar Proton Solar Proton Event Lunar Dust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aburaya, T., Hisamatsu, T., Matsuda, S.: Analysis of 10 years flight data of cell monitor on ETS-V. Solar Energy Mat. Solar Cells 68, 15–22 (2001)CrossRefGoogle Scholar
  2. Adams, J.H., Bhattacharya, M., Lin, Z.W., Pendleton, G., Walts, J.W.: The ionizing radiation environment on the Moon. Adv. Space Res. 40, 338–341 (2007)CrossRefGoogle Scholar
  3. Bates, J.R., Fang, P.H.: Results of solar cell performance in lunar base derived from Appolo missions. Solar Energy Mat. Solar Cells 26, 79–84 (1992)CrossRefGoogle Scholar
  4. Bates, J.R., Fang, P.H.: Some astronomical effects observed by solar cells from Apollo missions on lunar surface. Sol. Energy Mat. Sol. Cells 68, 23–29 (2001)CrossRefGoogle Scholar
  5. Becker, R.H.: Nitrogen on the moon. Science 290, 1110–1111 (2006)CrossRefGoogle Scholar
  6. Bussey, D.B.J., Mc Govern, J.A., Spudis, P.D., Neish, C.O., Noda, H., Yishihora Sorensen, S.A.: Illumination conditions of the south pole of the moon derived using Kaguya topography. Icarus 208, 558–564 (2010)CrossRefGoogle Scholar
  7. Chopra, R.L., Paulson, P.D., Dutta, V.: Thin-film Solar Cells-An Overview. Prog. Photovolt. Res. Appl. 12, 69–92 (2004)CrossRefGoogle Scholar
  8. Cocks, F.H., Watkins, S.: Magnetic shielding of interplanetary spacecraft against solar flare radiation. NASA CR–195539. NASA, Washington (1993)Google Scholar
  9. De Angelis, G., Badavi, F.F., Clem, J.M., Blattnig, S.R., Clowdsley, M.S., Nealy, J.E., Tripathi, R.K., Wilson, J.W.: Modelling of the lunar radiation environment. Nuclear Physics B (Proc. Suppl.) 166, 69–183 (2007)Google Scholar
  10. Deng, A., Thiam, N., Thiam, A., Maiga, A.S., Sissoko, G.: Magnetic field effect on the electrical parameters of a polycrystalline silicon solar. Res. J. Appl. Sci. Engg. Techn. 3(7), 602–611 (2011)Google Scholar
  11. Dodson, H.W., Simon, P., Svestka, Z.: Catalog of solar particle events 1955–1969. D. Reidel Publishing Co., Dordrecht (1975)CrossRefGoogle Scholar
  12. Fatemi, N.S., Polland, H.E., Hon, H.D., Sharps, P.R.: Solar array trades between very high efficiency multijunction and space solar cells. In: Proceedings of 28th IEEE PVSC Symposium, Alaska (2000),
  13. Fortea, J.P.: A Study of different techniques for cooling solar cells in centralized concentrator photovoltaic power plants. PhD Thesis. University of Toulouse (1981)Google Scholar
  14. Girish, T.E.: Nighttime operation of photovoltaic systems in planetary bodies. Solar Energy Mat. Solar Cells 90, 825–831 (2006)CrossRefGoogle Scholar
  15. Girish, T.E., Aranya, S.: Moon’s radiation environment and expected performance solar cells in the future Lunar missions (2010), arXiv Preprint: 1012.0717Google Scholar
  16. Girish, T.E., Aranya, S., Nisha, N.G.: Photovoltaic power generation using albedo and thermal radiations in the satellite orbits around planetary bodies. Sol. Energy Mat. Sol. Cells 91, 1503–1504 (2007)CrossRefGoogle Scholar
  17. Girish, T.E., Gopkumar, G.: Secular Changes in Solar Magnetic Flux Amplification Factor and Prediction of Space Weather (2010), arXiv preprint: 1011.4639Google Scholar
  18. Henry, B., Crutis, Swar, C.K.: Performance of GaAs and Si concentrator cells under 37 Mev proton irradiation. NASA Technical memorandum 100144. NASA, Washington (1987)Google Scholar
  19. Ignatiev, A., Freundlich, A., Duke, M., Rosenberg, S.: New architecture for Space solar power systems: Fabrication of silicon solar cells using in-situ resources (2000),
  20. Ignatiev, A., Freundlich, A., Horton, C.: Solar cell development on the surface of moon from in-situ lunar resources. In: Proc. IEEE Aerospace Conference, vol. 1, p. 318 (2004), doi:10.1109/AERO.2004.1367615Google Scholar
  21. Kim, M.Y., Wilson, J.W., Cucinotta, F.A.: A solar cycle statistical model for the projection of space radiation environment. Adv. Space Res. 37, 1741–1748 (2006)CrossRefGoogle Scholar
  22. Landis, G.A., Merrit, D., Raffale, R.P., Scheiman, P.: High Temperature Solar Cell Development, pp. 241–247. NASA CP-2005-213431, NASA, Cleveland (2005)Google Scholar
  23. Lee, L.F., Paranthaman, M., Mathis, J.M., Goyal, A., Kroeger, D.M., Specht, E.D., Williams, R.K., List, F.A., Martin, P.M., Park, C., Norton, D.P., Christen, D.K.: Alternative Buffer Architectures for High Critical Current Density YBCO Superconducting Deposits on Rolling Assisted Biaxially-Textured Substrates. Jpn. J. App. Phys. 38, L178–L180 (1999)CrossRefGoogle Scholar
  24. Letin, V.A., Nadiradze, A.B., Novikov, L.S.: Analysis of solid microparticle influene on spacecraft solar arrays. In: Proc. 31st Photovoltaic Specialists Conf., IEEE/PVSC 2005-1488269, pp. 862–865 (2005), doi:10.1109/PVSC.2005.1488269Google Scholar
  25. McCracken, K.G., Dreschoff, G.A.M., Zeller, E.J., Smart, D.F., Shea, M.A.: Solar cosmic ray events for the period 1561-1994: 1 Identification in polar ice 1561-1950. J. Geophys. Res. 106, 21585–21598 (2001a)CrossRefGoogle Scholar
  26. McCracken, K.G., Dreschoff, G.A.M., Zeller, E.J., Smart, D.F., Shea, M.A.: Solar cosmic ray events for the period 1561-1994: 2 The Gleissberg periodicity. J. Geophys. Res. 106, 21599–21609 (2001b)CrossRefGoogle Scholar
  27. Markvart, T., Castner, L.: Practical handbook of Photovoltaics. Fundamentals and applications, pp. 418–420. Elsevier, Amsterdam (2003)Google Scholar
  28. Matcham, J., Eesbeck, M.V., Gerlach, L.: Effects of simulated solar UV radiation in the solar cells efficiency and transparent cell components. In: Proceedings of 5th European Space Power Conference, ESA SP-416, pp. 643–650 (1998)Google Scholar
  29. Partain, L.D., Fraas, L.M.: Solar Cells and their Applications, 2nd edn., pp. 397–424. Wiley, Singapore (2010)Google Scholar
  30. Petri, D.A., Cataldo, R.L., Bozek, J.M.: Power system requirements and definition for Lunar and Mars outposts. In: Proceedings of the 25th IECEC, American Institute of Chemical Engineers, New York, vol. 5, pp. 18–27 (1990)Google Scholar
  31. Royne, A., Dey, C., Mills, D.: Cooling of photovoltaic cells under concentrated illumination; a critical review. Solar Energy Mat. Solar Cells 86, 451–483 (2005)CrossRefGoogle Scholar
  32. Serafettin, E.: The effect of electric and magnetic fields on the operation of a photovoltaic cell. Sol. Energy Mat. Sol. Cells 71, 273–280 (2002)CrossRefGoogle Scholar
  33. Serafettin, E.: Comparing the behaviours of some typical solar cells under external effects. Teknoloji 111(3), 233–237 (2008)Google Scholar
  34. Shea, M.A., Smart, D.F., McCracken, K.G., Dreschoff, G.A.M., Prince, H.E.: Solar proton events for 450 years: The Carrington event in perspective. Adv. Space Res. 38, 232–328 (2006)CrossRefGoogle Scholar
  35. Sridharan, R., Ahmed, S.M., Das, T.P., Sreelatha, P., Pradeepkumar, P., Neha, N., Supriya, G.: Direct evidence for water (H2O) in the sunlit lunar ambience from CHACE on MCP of Chandrayan I. Planet Space Sci. 58, 947–950 (2010)CrossRefGoogle Scholar
  36. Sumita, T., Imaizumi, M., Kawakitta, S., Matsuda, S., Kuwajima, S., Obshima, T., Kamiya, T.: Terrestrial Solar Cells in Space. In: 2004 IEEE Radiation Effects Data Workshop (IEEE Cat. No.04TH8774), Georgia, July 22-22 (2004), doi:10.1109/REDW.2004.1352887Google Scholar
  37. Taylor, L.A., Schmitt, H.H., Carrier, W.D., Nakagawa, M.: The lunar dust problem: from liability to asset. In: Proc. 1st Space Exploration Conference, pp. 1–8. AIAA publication, Florida (2005)Google Scholar
  38. Torchynska, T.V., Polupan, G.P.: III-V material solar cells for space application. Semicond. Phys. Quant. Electr. Optoelect. 5, 63–70 (2002)Google Scholar
  39. Wolfgang, K.: Radiation effects on space craft and counter measures selected cases. In: Liensten, J. (ed.) Space Weather, pp. 231–240. Springer, Berlin (2007)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • T. E. Girish
    • 1
  • S. Aranya
    • 1
  1. 1.University CollegeTrivandrumIndia

Personalised recommendations