Advertisement

Moon pp 347-365 | Cite as

Condition of Solar Radiation on the Moon

  • Xiongyao Li
  • Wen Yu
  • Shijie Wang
  • Shijie Li
  • Hong Tang
  • Yang Li
  • Yongchun Zheng
  • Kang T. Tsang
  • Ziyuan Ouyang

Introduction

Solar radiation is an exterior heat source of the Moon and represents a key resource with respect to returning to the Moon. It controls the variation of lunar-surface temperature during the lunation, and changes the thermal radiation properties of the lunar surface. In lunar Earth-based exploration, orbital exploration, and manned and unmanned lunar surface activities, solar radiation is an important factor which should be considered.

Keywords

Solar Irradiance Lunar Surface Solar Altitude Solar Incidence Angle Lunar Topography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archinal, B.A., Rosiek, M.R., Kirk, R.L., Hare, T.L., Redding, B.L.: Final completion of the unified lunar control network 2005 and lunar topographic model. In: Proceedings of Lunar and Planetary Science XXXVIII, League City, Texas, p. 1904 (2007)Google Scholar
  2. Arnold, J.R.: Ice in the lunar polar regions. J. Geophys. Res. 84, 5659–5668 (1979)CrossRefGoogle Scholar
  3. Bretagnon, P., Francon, G.: Planetary theories in rectangular and spherical variables VSOP 87 solutions. A&A 202, 309–315 (1988)zbMATHGoogle Scholar
  4. Bussey, D.B.J., Spudis, P.D., Robinson, M.S.: Illumination conditions at the lunar south pole. Geophys. Res. Lett. 26, 1187–1190 (1999)CrossRefGoogle Scholar
  5. Bussey, D.B.J., Robinson, M.S., Edwards, K., Cook, A.C., Watters, T.: Simulation of illumination conditions at the lunar south pole. In: Proceedings of Lunar and Planetary Science XXXII, League City, Texas, p. 1907 (2001) Google Scholar
  6. Bussey, D.B.J., Lucey, P.G., Steutel, D., Robinson, M.S., Spudis, P.D., Edwards, K.D.: Permanent shadow in simple craters near the lunar poles. Geophys. Res. Lett. 30, 1278 (2003)CrossRefGoogle Scholar
  7. Bussey, D.B.J., Robinson, M.S., Fristad, K., Spudis, P.D.: Permanent sunlight at the lunar north pole. In: Proceedings of Lunar and Planetary Science Conference XXXV, League City, Texas, p. 1387 (2004)Google Scholar
  8. Bussey, D.B.J., Spudis, P.D.: The Lunar Polar Illumination Environment: What We Know & What We Don’t. In: Proceedings of Space Resources Roundtable VI, Colorado, p. 6022 (2004)Google Scholar
  9. Bussey, D.B.J., Fristad, K.E., Schenk, P.M., Robinson, M.S., Spudis, P.D.: Constant illumination at the lunar north pole. Nature 434, 842 (2005)CrossRefGoogle Scholar
  10. Butler, B.J.: The migration of volatiles on the surfaces of Mercury and the Moon. J. Geophys. Res. 102, 19,283-19,291 (1997)Google Scholar
  11. Chapront-Touzé, M., Chapront, J.: The Lunar ephemeris ELP 2000. A&A 124, 50–62 (1983)Google Scholar
  12. Davies, M.E., Colvin, T.R.: Lunar coordinates in the regions of the Apollo landers. J. Geophys. Res. 105, 20277–20280 (2000)CrossRefGoogle Scholar
  13. De Weerd, J.F., Kruijff, M., Ockels, W.J.: Search for Eternally Sunlit Areas at the Lunar South Pole From Recent Data: New Indications Found. In: Proceedings of 49th International Astronomical Congress, IAF-98-Q.4.07 (1998)Google Scholar
  14. Duke, M.B.: The lunar environment. In: Eckart, P. (ed.) The Lunar Base Handbook, pp. 105–151. McGraw-Hill Primis Custom Publishing, New York (1999)Google Scholar
  15. Feldman, W.C., Maurice, S., Binder, A.B.: Fluxes of fast and epithermal neutrons from Lunar Prospector: Evidence for water ice at the lunar poles. Science 281, 1496–1500 (1998)CrossRefGoogle Scholar
  16. Feldman, W.C., Lawrence, D.J., Elphic, R.C.: Polar hydrogen deposits on the Moon. J. Geophys. Res. 105, 4175–4195 (2000)CrossRefGoogle Scholar
  17. Feldman, W.C., Maurice, S., Lawrence, D.J.: Evidence for water ice near the lunar poles. J. Geophys. Res. 106, 23,231–23,251 (2001)CrossRefGoogle Scholar
  18. Fristad, K., Bussey, D.B.J., Robinson, M.S., Spudis, P.D.: Ideal landing sites near the lunar poles. In: Proceedings of Lunar and Planetary Science Conference XXXV, League City, Texas, p. 1582 (2004)Google Scholar
  19. Fröhlich, C.: Total solar irradiance variations since 1978. Adv. Space Res. 10, 1409–1416 (2002)CrossRefGoogle Scholar
  20. Fröhlich, C., Lean, J.: The Sun’s total irradiance: Cycles, trends and related climate change uncertainties since 1976. Geophys. Res. Lett. 25, 4377–4380 (1998)CrossRefGoogle Scholar
  21. Ruitao, G.: Introduction to the Earth. Normal Untversity Press Beijing, Beijing (1988) (in Chinese)Google Scholar
  22. Heiken, G., Vaniman, D., French, B.M.: Lunar Sourcebook: A User’s Guide to the Moon. Cambridge University Press, Cambridge (1991)Google Scholar
  23. Hodges, R.R.: Ice in the lunar polar regions revisited. J. Geophys. Res. 107 (2002)Google Scholar
  24. Kruijff, M., Ockels, W.J.: Lunar visibilities and lighting conditions. In: Proceedings of the Lunar Science Conference XXVI, pp. 807–808 (1995)Google Scholar
  25. Kruijff, M.: Peaks of Eternal Light on the Lunar South Pole: How They Were Found and What They Look Like. In: Proceedings of Fourth International Conference on Exploration and Utilization of the Moon. ESTEC, ESA SP-462, p. 333 (2000)Google Scholar
  26. Lean, J., Beer, J., Bradley, R.: Reconstruction of solar irradiance since 1610: Implications for climate change. Geophys. Res. Lett. 22, 3195–3198 (1995)CrossRefGoogle Scholar
  27. Margot, J.L., Campbell, D.B., Jurgens, R.F., Slade, M.A.: Topography of the lunar poles from radar interferometry: A survey of cold trap locations. Science 284, 1658–1660 (1999)CrossRefGoogle Scholar
  28. Maxwell, E.L.: Metstat-the Solar Radiation Model Used in the Production of the National Solar Radiation Data Base(NSRDB). Solar Energy 26, 263–279 (1998)CrossRefGoogle Scholar
  29. Meeus, J.: Astronomical algorithms. Willmann-Bell Inc., Virginia (1991)Google Scholar
  30. Owczarek, S.: Vector model for calculation of solar radiation intensity and sums Incident on tilted surfaces: Indentification for the three sky condition in Warsaw. Renewable Energy 11, 77–96 (1977)CrossRefGoogle Scholar
  31. Solanki, S.K., Fligge, M.: Solar irradiance since 1874 Revisited. Geophys. Res. Lett. 3, 341–344 (1998)CrossRefGoogle Scholar
  32. Starukhina, L.: Water detection on atmosphereless celestial bodies: Alternative explanations of the observations. J. Geophys. Res. 106, 14,701–14,710 (2001)CrossRefGoogle Scholar
  33. Vasavada, A.R., Paige, D.A., Wood, S.E.: Near-surface temperatures on Mercury and the Moon and the stability of polar ice deposits. Icarus 141, 179–193 (1999)CrossRefGoogle Scholar
  34. Watson, K., Murray, B.C., Brown, H.: The behavior of volatiles on the lunar surface. J. Geophys. Res. 66, 3033–3045 (1961)CrossRefGoogle Scholar
  35. Willson, R.C.: Total solar irradiance trend during solar cycles 21 and 22. Science 26, 1963–1965 (1997)CrossRefGoogle Scholar
  36. Willson, R.C.: Secular total solar irradiance trend during solar cycles. Geophys. Res. Lett. 5, 3(1)–3(4) (2003)Google Scholar
  37. Zuber, M.T., Smith, D.E.: Topography of the lunar south polar region: Implications for the size and location of permanently shade areas. Geophys. Res. Lett. 24, 2183–2186 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Xiongyao Li
    • 1
  • Wen Yu
    • 1
    • 2
  • Shijie Wang
    • 1
  • Shijie Li
    • 1
  • Hong Tang
    • 1
  • Yang Li
    • 1
    • 2
  • Yongchun Zheng
    • 3
  • Kang T. Tsang
    • 4
  • Ziyuan Ouyang
    • 1
  1. 1.Institute of GeochemistryGuiyangChina
  2. 2.University of the Chinese Academy of SciencesBeijingChina
  3. 3.The National Astronomical ObservatoriesBeijingChina
  4. 4.Hong Kong University of Science and TechnologyHong KongChina

Personalised recommendations