Moon pp 267-293 | Cite as

Challenges in Transporting, Handling and Processing Regolith in the Lunar Environment

  • Otis Walton


It is well known that powders become more ‘cohesive’ as their mean particulate size decreases. This phenomenon is evidenced by such characteristics as poor flowability, clumping, avalanching, difficulty in fluidizing, and formation of quasi-stable, low-density configurations that are easily compacted. Gravity is often the primary driving force for powder movement in common powder processing and transfer operations. Because of this, gravity plays a role in how the flow behavior of powders is typically characterized. As a result, the ‘cohesiveness’ of a powder varies with gravity-level, with a powder appearing more ‘cohesive’ as the effective gravity level is decreased.


Granular Material Lunar Surface Lunar Regolith Lunar Soil Gravity Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdullah, E.C., Geldart, D.: The use of bulk density measurements as flowability indicators. Powder Technol. 102, 151–165 (1999)CrossRefGoogle Scholar
  2. Adamson, A.W.: Physical Chemistry of Surfaces, 3rd edn. Wiley, New York (1976); 5th edn. Wiley, London (1990)Google Scholar
  3. Arslan, H., Batiste, S., Sture, S.: Engineering Properties of Lunar Soil Simulant JSC-1A. ASCE J. Aerospace Engng 23(1), 70–83 (2010)CrossRefGoogle Scholar
  4. ASTM, The time that a given mass of powder takes to discharge through a hopper. Book of ASTM Standards, Part 9, American Society for Testing and Materials, Philadelphia, p. 45 (1978)Google Scholar
  5. Bagnold, R.: The Physics of Blown Sand and Desert Dunes, p. 265. Methuen, London (1941)Google Scholar
  6. Bailey, A.I., Price, A.G., Kay, S.M.: Interfacial energies of clean mica and of monomolecular films of fatty acids deposited on mica, in aqueous and non-aqueous media. Spec. Discuss. Faraday Soc. 1, 118–127 (1970)CrossRefGoogle Scholar
  7. Brown, R.L., Richards, J.C.: Principles of Powder Mechanics. Pergamon Press, Oxford (1970)Google Scholar
  8. Carr, R.L.: Evaluating flow properties of solids. Chem. Engng 18, 163–168 (1965)Google Scholar
  9. Carrier III, W.D.: The four things you need to know about the geotechnical properties of lunar regolith. Lunar Geotechincal Institute, Lakeland, FL, USA (2005)Google Scholar
  10. Carrier III, W.D., Olhoeft, G.R., Mendell, W.: Physical Properties of the Lunar Surface. In: Heiken, G.H., Vaniman, D.T., French, B.M. (eds.) Lunar Source Book, pp. 475–594. Cambridge University Press (1991)Google Scholar
  11. Carson, J.: Flow Properties Test Report Lunar Simulant JSC-1A. Jenike and Johanson, Rept. 10583-1 (private communication) (2010)Google Scholar
  12. Castellanos, A., Valverde, J.M., Quintanilla, M.A.S.: The Sevilla Powder Tester: A tool for Characterizing the Physical Properties of Fine Cohesive Powders at Very Small Consolidations. Kona 22, 66–80 (2004)Google Scholar
  13. Colwell, J.E., Batiste, S., Horanyi, M., Robertson, S., Sture, S.: Lunar regolith: dust dynamics and regolith mechanics. Reviews of Geophysics 45, RG2006 (2007), doi:10.1029/2005RG000184Google Scholar
  14. Greenberg, P.S., Chen, D., Smith, S.: Aerosol Measurements of the Fine and Ultrafine Content of Lunar Regolith. NASA TM 2007-214956 (2007)Google Scholar
  15. Geldart, D.: Types of gas fluidization. Powder Technology 7, 285–292 (1973)CrossRefGoogle Scholar
  16. Grossman, J.J., Ryan, J.A., Mukerjee, N.R., Wegner, M.W.: In: Levinson, A.A. (ed.) Proc. of the Apollo 11 Lunar Science Conference, vol. 3, p. 2171. Pergamon Press, New York (1970)Google Scholar
  17. Güttler, C., Krause, M., Geretshauser, R.J., Seith, R., Blum, J.: The Physics of Protoplanetesimal Dust Agglomerates, Towards a Dynamical Collision Model. Astrophysical J. 701, 130–141 (2009)CrossRefGoogle Scholar
  18. Israelachvili, J.N.: Intermolecular and Surface Forces. Academic Press, London (1991)Google Scholar
  19. Hausner, H.H.: Friction Conditions in a Mass of Metal Powder. Int. J. Powder Metallurgy 3(4), 7–13 (1967)Google Scholar
  20. Jenike, A.W.: Storage and flow of solids. Bulletin 123, Engineering Experiment Station, University of Utah (1964)Google Scholar
  21. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R Soc. London, Ser. A 324, 301, 131 (1971)Google Scholar
  22. Johnson, S.M., Walton, O.R.: A Model for Surficially Variant Electrostatic Charges on Dielectric Powders for Particle Method Applications. In: Powders & Grains 2009: Proc. 6th Int. Conf. on Micromechanics of Granular Media, Golden CO, AIP (2009)Google Scholar
  23. Kaye, B.H.: Characterizing the flow of metal and ceramic powders using the concepts of fractal geometry and chaos theory to interpret the avalanching behavior of a powder. In: Battle, T.P., Henein, H. (eds.) Processing and Handling of Powders and Dusts, Minerals Metals & Materials Society, Warrendale, PA, pp. 277–282 (1997)Google Scholar
  24. Khambekar, J.: Flow Properties Test Report Lunar Simulant NU-LHT-2M. Jenike & Johanson, Rept 10643-1 (private communication) (2009)Google Scholar
  25. Leonovich, A.K., Gromov, V.V., Semyonov, P.S., Penetrigov, V.N., Shvartov, V.V.: Luna 16 and 20 investigations of the physical and mechanical properties of lunar soil. In: COSPAR Space Research XV, pp. 607–616. Akademie-Verlag, Berlin (1975) (Luna 16 & 20)Google Scholar
  26. Lee, L.-H.: Adhesion and cohesion mechanisms of lunar dust on the moon’s surface. In: Rimai, D.S., DeMejo, L.P., Mittal, K.L. (eds.) Fundamentals of Adhesion and Interfaces, VSP Utrecht, Netherlands, pp. 73–94 (1995)Google Scholar
  27. Miller, D.P., Lechuga-Ballesteros, D., Williams, L., Tan, T., Kanda, J., Foss, W., Walton, O., Mandel, A., Cai, X.: Dispersibility of Spray-dried Raffinose: Effects of Particle Size and Relative Humidity. In: AAPS Annual Meeting, Toronto, Canada, November 10-14 (2002)Google Scholar
  28. Mitchell, J.K., Houston, W.N., Scott, R.F., Costes, N.C., Carrier III, W.D., Bromwell, L.: Mechanical properties of lunar soil: Density, porosity, cohesion, and angle of friction. In: Proc. of 3rd Lunar Sci. Conf., pp. 3235–3253. MIT, Cambridge (1972)Google Scholar
  29. Mitchell, J.K., Houston, W.N., Carrier III, W.D., Costes N.C.: Apollo Soil Mechanics Experiment S-200. Final report, NASA Contract NAS 9–11266, Space Sciences Laboratory Series 15, Issue 7, Univ. of California, Berkeley (1974)Google Scholar
  30. Murphy, T.W., Adelberger, E.G., Battat, J.B.R., Hoyle, C.D., McMillan, R.J., Michelsen, E.L., Samad, R.L., Stubbs, C.W., Swanson, H.E.: Long-term degradation of optical devices on the moon (2010), arXiv:1003.0713v1 (astro-ph.EP) Google Scholar
  31. Nakagawa, M.: Personal communication, Colorado School of Mines, Golden, CO (2006)Google Scholar
  32. O’Brien, B.J.: Review of measurements of dust movements on the Moon during Apollo. Planet Space Sci. (2011), doi:10.1016/j.pss, 04.016 Google Scholar
  33. Prescott, J.K., Barnum, R.A. (2000) On Powder Flowability. Pharmaceutical Technology, pp. 60–84 (October 2000),
  34. Qian, G.-H., Bágyi, I., Burdick, I.W., Pfeffer, R., Shaw, H., Stevens, J.G.: Gas–solid fluidization in a centrifugal field. AIChE Journal 47(5), 1022–1034 (2001)CrossRefGoogle Scholar
  35. Roberts, A.W.: The Influence of Granular Vortex Motion on the Volumetric Performance of Enclosed Screw Conveyors. Powder Technology 104, 56–67 (1999)CrossRefGoogle Scholar
  36. Roberts, A.W.: Design Considerations And Performance Evaluation Of Screw Conveyors. Centre for Bulk Solids and Particulate Technologies, U. Newcastle, Australia (2005)Google Scholar
  37. Salisbury, J.W., Glaser, P.E., Stein, B.A., Vonnegut, B.: Adhesive Behavior of Silicate Powders in Ultrahigh Vacuum. J. Geophys. Res. 69(2), 235–242 (1964)CrossRefGoogle Scholar
  38. Shamlou, P.A.: Handling of bulk solids - Theory and practice. Butterworths, London (1990)Google Scholar
  39. Schmidt, H.: The Apollo Experience: Problems Encountered with Lunar Dust. In: Biological Effects of Lunar Dust, Workshop, Sunnyvale, CA, USA, March 2005, pp. 29–31 (2005)Google Scholar
  40. Schulze, D., Wittmaier, A.: Flow Properties of Highly Dispersed Powders at Very Small Consolidation Stresses. Chem. Eng. Technol. 26(2), 133–137 (2003)CrossRefGoogle Scholar
  41. Schwedes, J.: Review on testers for measuring flow properties of bulk solids. Granular Matter 5, 1–43 (2003); also, Schwedes, J.: Measurement of flow properties of bulk solids. Powder Technology 88 (3), 285–290 (1996) CrossRefGoogle Scholar
  42. Stubbs, T.J., Vondrak, R.R., Farrell, W.M.: Impact of dust on lunar exploration. In: Proc. of Int. Conf. Dust in Planetary Systems, Kauai, HI, ESA SP-643 (2007)Google Scholar
  43. Svarovsky, L.: Powder Testing Guide: Methods of Measuring the Physical Properties of Bulk Powders. Elsevier Applied Science, London (1987)Google Scholar
  44. Tardos, G.: Arching in Hoppers: Jenike’s Method of Hopper Design. A tutorial at Univ. Florida, Engineering Ressearch Center for Particle Technology (1999),
  45. Taylor, L.A., Schmidt, H.H., Carrier, W.D., Nakagawa, M.: The Lunar Dust Problem: From Liability to Asset. In: AIAA 1st Space Exploration Conference: Continuing the Voyage of Discovery, Orlando, Florida, paper 2510, January 30- February 1 (2005)Google Scholar
  46. Walton, O.R., Braun, R.L.: Simulation of Rotary-Drum and Repose Tests for Frictional Spheres and Rigid Sphere Clusters. In: Joint DOE/NSF Workshop on Flow of Particulates and Fluids, Ithaca, NY, USA, September 29-October 1 (1993), paper,
  47. Walton, O.R., De Moor, C.P., Miller, D.P.: Simulation of Low-Stress Compaction of Cohesive Micron-Scale Powders. In: AIChE 2003 Annual Meeting (Session T4-35a), San Francisco, CA, USA, November 16-21 (2003)Google Scholar
  48. Walton, O.R.: Adhesion of Lunar Dust. NASA/CR—2007-214685 (2007),
  49. Walton, O.R., De Moor, C.P., Gill, K.S.: Effects of gravity on cohesive behavior of fine powders: implications for processing Lunar regolith. Granular Matter 9(5), 353–363 (2007)CrossRefGoogle Scholar
  50. Williams, R., Shao, R., Overfelt, R.A.: The flowability of fine powders in reduced gravity conditions. Granular Matter 10(2), 139–144 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Otis Walton
    • 1
  1. 1.Grainflow DynamicsLivermoreUSA

Personalised recommendations