Advertisement

Moon pp 235-265 | Cite as

Lunar Drilling, Excavation and Mining in Support of Science, Exploration, Construction, and In Situ Resource Utilization (ISRU)

  • Kris Zacny

Space and Lunar Exploration: Historical Review

Exploration of almost any extraterrestrial body follows a path from low complexity, low science pay-off to high risk, high pay off. The Moon, being the closest extraterrestrial body, was the first body to be examined with a naked eye by ancient astronomers and philosophers from Babylonia, Greece, and Egypt. The invention of a telescope by Hans Lipperhey in 1608 allowed much more detailed observation of the Moon. With the aid of telescopes, Galileo Galilee could not only view details of the lunar surface, but also discovered the four largest moons of the Jupiter: Io, Europa, Ganymede and Callisto (now called Galilean satellites). The next leap in exploration of space was possible thanks to the development of rockets. Initially, rockets were built for military purposes only. During World War II, these included infamous V2 rockets and soon after, during the Cold War; they included Inter Continental Ballistic Missiles (ICBMs) capable of carrying nuclear warheads across the oceans. The ICBMs later formed the foundation for space rockets.

Keywords

Lunar Surface Drill Stem Lunar Regolith Lunar Soil Lunar Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Astrobotic Inc. (2011), http://astrobotic.net/ (accessed March 17, 2011)
  2. 2.
    Balasubramaniam, R., Gokoglu, S., Sacksteder, K., Wegeng, R., Suzuki, N.: Analysis of Solar-Heated Thermal Wadis to Support Extended-Duration Lunar Exploration. J. Thermophysics and Heat Transfer 25(1), 130–139 (2011)CrossRefGoogle Scholar
  3. 3.
    Bar-Cohen, Y., Zacny, K. (eds.): Drilling in Extreme Environments Penetration and Sampling on Earth and Other Planets. Wiley, New York (2009)Google Scholar
  4. 4.
    Bernold, L.: Motion and Path Control for Robotic Excavation. Journal of Aerospace Engineering 6(1), 1–18 (1993)CrossRefGoogle Scholar
  5. 5.
    Bernold, L.: Compaction of Lunar-Type Soil. Journal of Aerospace Engineering 7(2), 175–187 (1994)CrossRefGoogle Scholar
  6. 6.
    Blair, B., Zacharias, M.: The Value of Fuel Transfer to a Space Network. Presented at the NASA/USAF Advanced Space Propulsion Workshop (ASPW 2010), Colorado Springs, CO, November 15-17 (2010)Google Scholar
  7. 7.
    Bucek, M., Agui, J., Zeng, X., Wilkinson, R.A.: Experimental Measurements of Excavation Forces in Lunar Soil Test Beds. In: ASCE Conf. Proc. doi:10.1061/40988(323)5, Proc. of the 11th Int. Conf. on Engineering, Science, Construction, and Operations in Challenging Environments (2008)Google Scholar
  8. 8.
    Chandler, F., Bienhoff, D., Cronick, J., Grayson, G.: Propellant Depots for Earth Orbit and Lunar Exploration. In: AIAA SPACE 2007 Conference & Exposition, Long Beach, California, AIAA 2007-6081, September 18-20 (2007), http://pdf.aiaa.org/preview/CDReadyMSPACE07_1808/PV2007_6081.pdf
  9. 9.
    Colaprete, A., Schultz, P., Heldmann, J., Wooden, D., Shirley, M., Ennico, K., Hermalyn, B., Marshall, W., Ricco, A., Elphic, R.C., Goldstein, D., Summy, D., Bart, G.D., Asphaug, E., Korycansky, D., Landis, D., Sollitt, L.: Detection of Water in the LCROSS Ejecta Plume. Science 330(6003), 463–468 (2010)CrossRefGoogle Scholar
  10. 10.
    Carter, G.A., McCain, D.C.: Relationship of leaf spectral reflectance to chloroplast water content determined using NMR microscopy. Remote Sensing of Environment 46(3), 305–310 (1993)CrossRefGoogle Scholar
  11. 11.
    Chaikin, A.: The Other Moon Landings. Air & Space Magazine, 30–37 (February/March 2004)Google Scholar
  12. 12.
    Chang, K.: After 17 Years, a Glimpse of a Lunar Purchase. New York Times (2010), http://www.nytimes.com/2010/03/31/science/space/31moon.html?ref=science (retrieved March 1, 2011)
  13. 13.
    Gaier, J.: The Effects of Lunar Dust on EVA Systems During Apollo Missions. NASA TM-2005-213610/REV1 (2005)Google Scholar
  14. 14.
    Gibson, M., Knudsen, C.: Lunar Oxygen Production from Ilmenite. In: Mendell, W.W. (ed.) Lunar Bases and Space Activities of the 21st Century, Lunar and Planetary Institute, Houston, p. 543 (1985)Google Scholar
  15. 15.
    Heiken, G., Vaniman, D., French, B. (eds.): Lunar Sourcebook: A User’s Guide to the Moon. Cambridge University Press (1991)Google Scholar
  16. 16.
    Herman, J., Sadick, S., Maksymuk, M., Chu, P., Carlson, L.: Dust-Tolerant Mechanism Design for Lunar & NEO Surface Systems. Paper #1401, IEEE Aerospace Conference, Big Sky, Montana, March 5-12 (2011)Google Scholar
  17. 17.
    Johnson, N.L.: Handbook of soviet lunar and planetary exploration. Science and technology series, vol. 47. Amer. Astronaut Soc. Publishing (1979)Google Scholar
  18. 18.
    Jones, H.L., Thornton, J.P., Balasubramaniam, R., Gokoglu, S., Sacksteder, K., Whittaker, W.L.: Enabling Long-Duration Lunar Equatorial Operations with Thermal Wadi Infrastructure. In: 49th AIAA Aerospace Sciences Meeting (January 2011)Google Scholar
  19. 19.
    Lin, C., Goodings, D., Bernold, L., Dick, R., Fourney, W.: Model Studies of Effects on Lunar Soil of Chemical Explosions. Journal of Geotechnical Engineering 120(10), 1684–1703 (1994)CrossRefGoogle Scholar
  20. 20.
    Lunabotics Mining Competition, NASA Kennedy Space Center (2011), http://www.nasa.gov/offices/education/centers/kennedy/technology/lunabotics.html
  21. 21.
    Mueller, R.P., van Susante, P.A.: Review of Lunar Regolith Excavation Robotic Device Prototypes. In: AIAA Space 2011, Long Beach, CA, September 26-29 (2011)Google Scholar
  22. 22.
    Okon, A. (2010) Mars Science Laboratory Drill. In: Proc. 40th Aerospace Mechanism Symposium, NASA KSC, May 12-14 (2010)Google Scholar
  23. 23.
    Olvera-Cervantes, J., Cressler, J., Medina-Monroy, J.-L., Thrivikraman, T., Banerjee, B., Laskar, J.: A New Analytical Method for Robust Extraction of the Small-Signal Equivalent Circuit for SiGe HBTs Operating at Cryogenic Temperatures. IEEE Trans. Microwave Theory and Techniques 56, 568–574 (2008)CrossRefGoogle Scholar
  24. 24.
    Oravec, H.: Understanding Mechanical Behavior of Lunar Soils for the Study of Vehicle Mobility. PhD Thesis, Case Western Reserve University, Civil Eng. (2009), http://etd.ohiolink.edu/view.cgi?acc_num=case1233521118
  25. 25.
    Paige, D.A., Siegler, M.A., Zhang, J.A., Hayne, P.O., Foote, E.J., Bennett, K.A., Vasavada, A.R., Greenhagen, B.T., Schofield, J.T., McCleese, D.J., Foote, M.C., De Jong, E.M., Bills, B.G., Hartford, W., Murray, B.C., Allen, C.C., Snook, K.J., Soderblom, L.A., Calcutt, S., Taylor, F.W., Bowles, N.E., Bandfield, J.L., Elphic, R.C., Ghent, R.R., Glotch, T.D., Wyatt, M.B., Lucey, P.G.: Diviner Lunar Radiometer Observations of Cold Traps in the Moon’s South Polar Region. Science 330, 479–482 (2010)CrossRefGoogle Scholar
  26. 26.
    Paulsen, G., Zacny, K., McKay, C., Glass, B., Szczesiak, M., Craft, J., Santoro, C., Shasho, J., Davila, A., Marinova, M., Pollard, W., Jackson, A.: Field Testing of the IceBreaker Mars Drill in the Antarctic. In: LPSC 2011, Abstract #190 (2011)Google Scholar
  27. 27.
    Sacksteder, K.R., Wegeng, R.S., Suzuki, N.H.: Lunar Prospecting Using Thermal Wadis and Compact Rovers Part A: Infrastructure for Surviving the Lunar Night. In: AIAA Space 2010 Conference (August 2010)Google Scholar
  28. 28.
    Shabo, B., Barnes, F., Sture, S., Ko, H.: Effectiveness of vibrating bulldozer and plow blades on draft force reduction. Trans. of the ASAE 41(2), 283–290 (1998)Google Scholar
  29. 29.
    Sullivan, T., Koenig, E., Knudsen, C., Gibson, M.: Pneumatic conveying of materials at partial gravity. J. of Aerospace Engineering 7(2), 199 (1994)CrossRefGoogle Scholar
  30. 30.
    Thornton, J., Whittaker, W., Jones, H., Mackin, M., Barsa, R., Gump, D.: Thermal Strategies for Long Duration Mobile Lunar Surface Missions. In: 48th AIAA Aerospace Sciences Meeting (January 2010)Google Scholar
  31. 31.
    van Susante, P., Dreyer, C.: Lunar and Planetary Excavation Prototype Development and Testing at the Colorado School of Mines. In: ASCE Earth and Space 2010, Honolulu, HI, March 5-8 (2010)Google Scholar
  32. 32.
    Wagner, S.: The Apollo Experience Lessons Learned for Constellation Lunar Dust Management. NASA TP-2006-213726 (2006)Google Scholar
  33. 33.
    Wegeng, R.S., Mankins, J.C., Taylor, L.A., Sanders, G.B.: Thermal Energy Reservoirs from Processed Lunar Regolith. In: 5th Int. Energy Conv. Eng. Conf. (July 2007)Google Scholar
  34. 34.
    Zeng, X., He, C., Oravec, H., Wilkinson, A., Agui, J., Asnani, V.: Geotechnical Properties of JSC-1A Lunar Soil Simulant. J. Aerosp. Engrg. 23, 111 (2010)CrossRefGoogle Scholar
  35. 35.
    Zacny, K., Huang, K., McGehee, M., Neugebauer, A., Park, S., Quayle, M., Sichel, R., Cooper, G.: Lunar Soil Extraction Using Flow of Gas. In: Proc. of Revolutionary Aerospace Systems Concepts - Academic Linkage (RASC-AL) Conference, Cocoa Beach, Florida, April 28-May 1 (2004)Google Scholar
  36. 36.
    Zacny, K., Glaser, D., Bartlett, P., Davis, K., Wilson, J.: Test Results of Core Drilling in Simulated Ice-Bound Lunar Regolith for the Subsurface Access System of the Construction & Resource Utilization eXplorer (CRUX) Project. In: 10th Int Conf on Engineering, Construction, and Operations in Challenging Environments, Earth & Space 2006 Conference, League City, TX, March 5-8 (2006)Google Scholar
  37. 37.
    Zacny, K., Bar-Cohen, Y., Brennan, M., Briggs, G., Cooper, G., Davis, K., Dolgin, B., Glaser, D., Glass, B., Gorevan, S., Guerrero, J., McKay, C., Paulsen, G., Stanley, S., Stoker, C.: Drilling Systems for Extraterrestrial Subsurface Exploration. Astrobiology Journal 8(3), 665–706 (2008a)CrossRefGoogle Scholar
  38. 38.
    Zacny, K., Mungas, G., Mungas, C., Fisher, D., Hedlund, M.: Pneumatic Excavator and Regolith Transport System for Lunar ISRU and Construction. Paper No: AIAA-2008-7824 and Presentation, AIAA SPACE 2008 Conference & Exposition, San Diego, California, September 9-11 (2008)Google Scholar
  39. 39.
    Zacny, K., Craft, J., Wilson, J., Chu, P., Davis, K.: Percussive Digging Tool for Lunar Excavation and Mining Applications. Abstract 4046, LEAG-ICEUM-SRR, Cape Canaveral, FL, October 28-31 (2008c)Google Scholar
  40. 40.
    Zacny, K., Craft, J., Hedlund, M., Chu, P., Galloway, G., Mueller, R.: Investigating the Efficiency of Pneumatic Transfer of JSC-1a Lunar Regolith Simulant in Vacuum and Lunar Gravity During Parabolic Flights. In: AIAA Space 2010, AIAA-2010-8702, Anaheim, CA, August 31-September 2 (2010a)Google Scholar
  41. 41.
    Zacny, K., Mueller, R.P., Craft, J., Wilson, J., Hedlund, M., Cohen, J.: Five-Step Parametric Prediction and Optimization Tool for Lunar Surface Systems Excavation Tasks. In: ASCE Earth and Space, Honolulu HI, March 15-17 (2010b)Google Scholar
  42. 42.
    Zacny, K., Bar-Cohen, Y.: Drilling and excavation for construction and in situ resource utilization. In: Badescu, V. (ed.) Mars: Prospective Energy and Material Resources, ch. 14. Springer, Heidelberg (2010c)Google Scholar
  43. 43.
    Zacny, K.: IceBite Blog: Remote Control (2011), http://www.astrobio.net/index.php?option=com_expedition&task=detail&id=3692 (accessed March 21, 2011)
  44. 44.
    XPRIZE, The Google Lunar X PRIZE (2011), http://www.googlelunarxprize.org/ (accessed March 21, 2011)

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Kris Zacny
    • 1
  1. 1.Honeybee Robotics Spacecraft Mechanisms CorporationNew YorkUSA

Personalised recommendations