Railway Track Allocation - Simulation, Aggregation, and Optimization

  • Ralf Borndörfer
  • Thomas Schlechte
  • Elmar Swarat
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 148)


Today the railway timetabling process and the track allocation is one of the most challenging problems to solve by a railway company. Especially due to the deregulation of the transport market in the recent years several suppliers of railway traffic have entered the market in Europe. This leads to more potential conflicts between trains caused by an increasing demand of train paths. Planning and operating railway transportation systems is extremely hard due to the combinatorial complexity of the underlying discrete optimization problems, the technical intricacies, and the immense size of the problem instances. In order to make best use of the infrastructure and to ensure economic operation, efficient planning of the railway operation is indispensable. Mathematical optimization models and algorithms can help to automatize and tackle these challenges. Our contribution in this paper is to present a renewed planning process due to the liberalization in Europe and an associated concept for track allocation, which consists of three important parts, simulation, aggregation, and optimization. Furthermore, we present results of our general framework for real world data.


Headway Time Crew Schedule Railway System Railway Infrastructure Railway Transportation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbink, Fischetti, Kroon, Timmer, Vromans: Reinventing Crew Scheduling at Netherlands Railways. Interfaces 35(5), 393–401 (2005)CrossRefGoogle Scholar
  2. Albers: Online algorithms: a survey. Math, Program 97(1-2), 3–26 (2003)MathSciNetzbMATHGoogle Scholar
  3. Anderegg, Eidenbenz, Gantenbein, Stamm, Taylor, Weber, Widmayer: Train Routing Algorithms: Concepts, Design Choises, and Practical Considerations. In: Ladner (ed.) ALENEX, pp. 106–118. SIAM (2003)Google Scholar
  4. Barnhart, Laporte: Handbooks in Operations Research & Management Science: Transportation. North-Holland (2007)Google Scholar
  5. Barnier, Brisset, Rivire, Ere: Slot Allocation with Constraint Programming: Mod¬els and Results. In: Proc. of the Fourth International Air Traffic Management R&D Seminar ATM (2001)Google Scholar
  6. Bengtsson, L., Galia, R., Gustafsson, T., Hjorring, C., Kohl, N.: Railway Crew Pairing Optimization. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner, D., Zaroliagis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 126–144. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. Borndörfer, Erol, Graffagnino, Schlechte, Swarat: Optimizing the Simplon Railway Corridor, ZIB Report 10-24, ZIB, Takustr. 7, 14195 Berlin (2010)Google Scholar
  8. Borndörfer, Erol, Schlechte: Optimization of macroscopic train schedules via TS-OPT. In: Hansen, Wendler, Weidmann, Lüthi, Rodriguez, Ricci, Kroon (eds.) Proceedings of the 3rd International Seminar on Railway Operations Modelling and Analysis-Engineering and Optimisation Approaches, Zürich, Switzerland (2009)Google Scholar
  9. Borndörfer, Grötschel, Jaeger: Planungsprobleme im öffentlichen Verkehr. In: Grötschel, M., Lucas, K., Mehrmann, V. (eds.) Produktionsfaktor Mathema-Tikwie Mathematik Technik und Wirtschaft bewegt, acatech Diskutiert, ZIB Report 08-20, pp. 127–153. acatech – Deutsche Akademie der Technikwissenschaften und Springer, Heidelberg (2008)Google Scholar
  10. Borndörfer, Grötschel, Jaeger: Planning Problems in Public Transit, ZIB Report 09-13, ZIB, Takustr. 7, 14195 Berlin (2009); To appear in English translations of acatech bookGoogle Scholar
  11. Borndörfer, Grötschel, Lukac, Mitusch, Schlechte, Schultz, Tanner: An Auctioning Approach to Railway Slot Allocation. An Auctioning Approach to Railway Slot Allocation 1(2), 163–196 (2006)Google Scholar
  12. Borndörfer, Grötschel, Pfetsch: A Column-Generation Approach to Line Planning in Public Transport. Transportation Science 41(1), 123–132 (2007)CrossRefGoogle Scholar
  13. Borndörfer, Schlechte: Models for Railway Track Allocation. In: Liebchen, Ahuja, Mesa (eds.) ATMOS 2007 - 7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems, Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI). Schloss Dagstuhl, Germany (2007)Google Scholar
  14. Borndörfer, Schlechte, Weider: Railway Track Allocation by Rapid Branching. In: Erlebach, Lübbecke (eds.) Proceedings of the 10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems. OASIcs, vol. 14, pp. 13–23. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Germany (2010)Google Scholar
  15. Brännlund, Lindberg, Nou, Nilsson: Railway Timetabling using Langangian Relaxation. Transportation Science 32(4), 358–369 (1998)zbMATHCrossRefGoogle Scholar
  16. Bussieck: Optimal lines in public rail transport, PhD thesis, TU Braunschweig (1997)Google Scholar
  17. Bussieck, Winter, Zimmermann: Discrete optimization in public rail transport. Mathematical Programming 79B(1-3), 415–444 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  18. Cacchiani: Models and Algorithms for Combinatorial Optimization Problems arising in Railway Applications, PhD thesis, DEIS, Bologna (2007)Google Scholar
  19. Cacchiani, Caprara, Toth: A column generation approach to train timetabling on a corridor 4OR(2), 125–142 (2008)MathSciNetGoogle Scholar
  20. Cai, Goh: A fast heuristic for the train scheduling problem. Comput. Oper. Res. 21(5), 499–510 (1994)zbMATHCrossRefGoogle Scholar
  21. Caimi: Algorithmic decision support for train scheduling in a large and highly utilised railway network, PhD thesis, ETH Zurich (2009)Google Scholar
  22. Caimi, Burkolter, Herrmann: Finding Delay-Tolerant Train Routings through Stations. In: Fleuren, den Hertog, Kort (eds.) OR, pp. 136–143 (2004)Google Scholar
  23. Caimi, Burkolter, Herrmann, Chudak, Laumanns: Design of a Railway Scheduling Model for Dense Services. Networks and Spatial Economics 9(1), 25–46 (2009)zbMATHCrossRefGoogle Scholar
  24. Caprara, Fischetti, Toth: Modeling and Solving the Train Timetabling Problem. Operations Research 50(5), 851–861 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  25. Caprara, Galli, Toth: Solution of the Train Platforming Problem. In: Liebchen, Ahuja, Mesa (eds.) ATMOS, Dagstuhl Seminar Proceedings, Internationales Begegnungs-und Forschungszentrum fuer Informatik (IBFI), vol. 07001, Schloss Dagstuhl, Germany (2007)Google Scholar
  26. Caprara, Kroon, Monaci, Peeters, Toth: Passenger Railway Optimization. In: Barnhart, C., Laporte, G. (eds.) Handbooks in Operations Research and Management Science, ch. 3, vol. 14, pp. 129–187. Elsevier (2007)Google Scholar
  27. Caprara, Monaci, Toth, Guida: A Lagrangian heuristic algorithm for a real-world train timetabling problem. Discrete Appl. Math. 154(5), 738–753 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  28. Castelli, Pellegrini & Pesenti: Airport slot allocation in Europe: economic efficiency and fairness”, Working Papers 197, Department of Applied Mathematics, University of Venice (2010)Google Scholar
  29. Clausen, Larsen, Larsen, Rezanova: Disruption management in the airline industry-Concepts, models and methods. Comput. Oper. Res. 37(5), 809–821 (2010)zbMATHCrossRefGoogle Scholar
  30. Corman, D’Ariano, Pacciarelli, Pranzo: Bi-objective conflict detection and resolution in railway traffic management. Transportation Research Part C: Emerging Technologies (2010a) (in Press, Corrected Proof)Google Scholar
  31. Corman, D’Ariano, Pacciarelli, Pranzo: A tabu search algorithm for rerouting trains during rail operations. Transportation Research Part B: Methodological 44(1), 175–192 (2010b)CrossRefGoogle Scholar
  32. D’Ariano, Corman, Pacciarelli, Pranzo: Reordering and Local Rerouting Strategies to Manage Train Traffic in Real Time. Transportation Science 42(4), 405–419 (2008)CrossRefGoogle Scholar
  33. Delorme, Gandibleux, Rodriguez: Stability evaluation of a railway timetable at station level. European Journal of Operational Research 195(3), 780–790 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  34. Eidenbenz, S., Pagourtzis, A., Widmayer, P.: Flexible Train Rostering. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 615–624. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  35. Erol, Klemenz, Schlechte, Schultz, Tanner: TTPLIB 2008-A Library for Train Timetabling Problems. In: Allan, J., Arias, E., Brebbia, C.A., Goodman, C., Rumsey, A.F., Sciutto, G. (eds.) Computers in Railways XI. WIT Press (2008)Google Scholar
  36. Fioole, Kroon, Maróti, Schrijver: A rolling stock circulation model for combining and splitting of passenger trains. European Journal of Operational Research 174(2), 1281–1297 (2006)zbMATHCrossRefGoogle Scholar
  37. Fischer, Helmberg: Dynamic Graph Generation and Dynamic Rolling Horizon Techniques in Large Scale Train Timetabling. In: Erlebach, Lübbecke (eds.) Proceedings of the 10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, OASIcs, vol. 14, pp. 45–60. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Germany (2010)Google Scholar
  38. Fischer, Helmberg, Janßen, Krostitz: Towards Solving Very Large Scale Train Timetabling Problems by Lagrangian Relaxation. In: Fischetti, Widmayer (eds.) ATMOS 2008, 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems. Schloss Dagstuhl-Leibniz-Zentrumfuer Informatik, Germany (2008)Google Scholar
  39. Fuchsberger: Solving the train scheduling problem in a main station area via a resource constrained space-time integer multi-commodity flow, Master’s thesis, Institut for Operations Research ETH Zürich (2007)Google Scholar
  40. Grönkvist: The Tail Assignment Problem, PhD thesis, Chalmers University of Technology and Göteborg University (2005)Google Scholar
  41. Grötschel, Krumke, Rambau: Online Optimization of Large Scale Systems. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  42. Hanne, Dornberger: Optimization Problems in Airline and Railway Planning-A Comparative Survey. In: Proceedings of the The Third International Workshop on Advanced Computational Intelligence (2010)Google Scholar
  43. Harrod: Modeling Network Transition Constraints with Hypergraphs. Transportation Science 10, 293–310 (2010)Google Scholar
  44. Hürlimann: Object oriented modeling of infrastructure elements and business processes in railways, PhD thesis, ETH Zürich (2001)Google Scholar
  45. Jespersen-Groth, Potthoff, Clausen, Huisman, Kroon, Maroti, Nielsen: Disruption management in passenger railway transportation, Econometric Institute Report EI 2007-05, Erasmus University Rotterdam, Econometric Institute (2007)Google Scholar
  46. Jespersen-Groth, J., Potthoff, D., Clausen, J., Huisman, D., Kroon, L., Maróti, G., Nielsen, M.N.: Disruption Management in Passenger Railway Transportation. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 399–421. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  47. Klabes: Algorithmic railway capacity allocation in a competitive European railway market, PhD thesis, RWTH Aachen (2010)Google Scholar
  48. Kroon, Huisman, Abbink, Fioole, Fischetti, Maróti, Schrijver, Steenbeek, Ybema: The New Dutch Timetable: The OR Revolution. Interfaces 39(1), 6–17 (2009)CrossRefGoogle Scholar
  49. Landex, Schittenhelm, Kaas, Schneider-Tilli: Capacity measurement with the UIC 406 capacity method. In: Tomii, Allan, Arias, Brebbia, Goodman, Rumsey, Sciutto (eds.) Computers in Railways XI. WIT Press (2008)Google Scholar
  50. Liebchen: Periodic Timetable Optimization in Public Transport, PhD thesis, Technische Universität Berlin (2006)Google Scholar
  51. Löbel: Optimal Vehicle Scheduling in Public Transit, Aachen: Shaker Verlag, Ph.D. thesis, Technische Universität Berlin (1997)Google Scholar
  52. Lusby, Larsen, Ehrgott, Ryan: Railway track allocation: models and methods. OR Spectrum 1(1), 1–41 (2009)Google Scholar
  53. Lusby, Larsen, Ryan, Ehrgott: Routing Trains through Railway Junctions: A New Set Packing Approach, Technical Report 1, Informatics and Mathematical Modelling, Technical University of Denmark, DTU, Richard Petersens Plads, Building 321, DK-2800 Kgs, Lyngby (2006)Google Scholar
  54. Peeters, Kroon: Circulation of railway rolling stock: a branch-and-price approach. Computers & OR 35(2), 538–556 (2008)zbMATHCrossRefGoogle Scholar
  55. Potthoff, Huisman, Desaulniers: Column generation with dynamic duty selection for railway crew rescheduling, Econometric Institute Report EI 2008-28, Erasmus University Rotterdam, Econometric Institute (2008)Google Scholar
  56. Rezanova, Ryan: The train driver recovery problem-A set partitioning based model and solution method. Comput. Oper. Res. 37(5), 845–856 (2010)zbMATHCrossRefGoogle Scholar
  57. Schlechte, Borndörfer, Erol, Graffagnino, Swarat: Aggregation Methods for Railway Networks. In: Hansen, Wendler, Ricci, Pacciarelli, Longo, Rodriguez (eds.) Proceedings of 4th International Seminar on Railway Operations Modelling and Analysis (IAROR), vol. 4 (2011)Google Scholar
  58. Schlechte, Tanner: Railway capacity auctions with dual prices. In: Proceedings of the 12th World Conference on Transport Research (2010)Google Scholar
  59. Trasse Schweiz AG, Business report (2009),
  60. Weider: Integration of Vehicle and Duty Scheduling in Public Transport, PhD thesis, TU Berlin (2007)Google Scholar
  61. Zwaneveld, Kroon, Romeijn, Salomon, Dauzere-Peres, Van Hoesel, Ambergen: Routing Trains Through Railway Stations: Model Formulation and Algorithms. Transportation Science 30(3), 181–194 (1996)zbMATHCrossRefGoogle Scholar
  62. Zwaneveld, Kroon, van Hoesel: Routing trains through a railway station based on a node packing model. European Journal of Operational Research 128(1), 14–33 (2001)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ralf Borndörfer
    • 1
  • Thomas Schlechte
    • 1
  • Elmar Swarat
    • 1
  1. 1.Zuse Institute Berlin (ZIB)Berlin-DahlemGermany

Personalised recommendations