Skip to main content

Getting More from PCA: First Results of Using Principal Component Analysis for Extensive Power Analysis

  • Conference paper
Topics in Cryptology – CT-RSA 2012 (CT-RSA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7178))

Included in the following conference series:

Abstract

Differential Power Analysis (DPA) is commonly used to obtain information about the secret key used in cryptographic devices. Countermeasures against DPA can cause power traces to be misaligned, which reduces the effectiveness of DPA. Principal Component Analysis (PCA) is a powerful tool, which is used in different research areas to identify trends in a data set. Principal Components are introduced to describe the relationships within the data. The largest principal components capture the data with the largest variance. These Principal Components can be used to reduce the noise in a data set or to transform the data set in terms of these components. We propose the use of Principal Component Analysis to improve the correlation for the correct key guess for DPA attacks on software DES traces and show that it can also be applied for other algorithms. We also introduce a new way of determining key candidates by calculating the absolute average value of the correlation traces after a DPA attack on a PCA-transformed trace. We conclude that Principal Component Analysis can successfully be used as a preprocessing technique to reduce the noise in a trace set and improve the correlation for the correct key guess using Differential Power Analysis attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template Attacks in Principal Subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 1–14. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Bohy, L., Neve, M., Samyde, D., Quisquater, J.-J.: Principal and independent component analysis for crypto-systems with hardware unmasked units. In: Proceedings of e-Smart 2003 (2003)

    Google Scholar 

  3. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Clavier, C., Coron, J.-S., Dabbous, N.: Differential Power Analysis in the Presence of Hardware Countermeasures. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 252–263. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis - A Generic Side-Channel Distinguisher. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Hotelling, H.: Analysis of a complex of statistical variables into principal components. The Journal of Educational Psychology, 417–441 (1933)

    Google Scholar 

  7. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer Series in Statistics. Springer, New York (2002)

    MATH  Google Scholar 

  8. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  9. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards (Advances in Information Security). Springer-Verlag New York, Inc., Secaucus (2007)

    MATH  Google Scholar 

  10. Messerges, T.S.: Power analysis attacks and countermeasures for cryptographic algorithms. PhD thesis, University of Illinois at Chicago, Chicago, IL, USA (2000)

    Google Scholar 

  11. Muijrers, R.A., van Woudenberg, J.G.J., Batina, L.: RAM: Rapid Alignment Method. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 266–282. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Pearson, K.: On lines and planes of closest fit to systems of points in space. Philosophical Magazine Series 2(6), 559–572 (1901)

    Article  MATH  Google Scholar 

  13. Smith, L.I.: A tutorial on principal components analysis (February 2002), http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf

  14. Souissi, Y., Nassar, M., Guilley, S., Danger, J.-L., Flament, F.: First Principal Components Analysis: A New Side Channel Distinguisher. In: Rhee, K.-H., Nyang, D. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 407–419. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. van Woudenberg, J.G.J., Witteman, M.F., Bakker, B.: Improving Differential Power Analysis by Elastic Alignment. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 104–119. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Batina, L., Hogenboom, J., van Woudenberg, J.G.J. (2012). Getting More from PCA: First Results of Using Principal Component Analysis for Extensive Power Analysis. In: Dunkelman, O. (eds) Topics in Cryptology – CT-RSA 2012. CT-RSA 2012. Lecture Notes in Computer Science, vol 7178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27954-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27954-6_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27953-9

  • Online ISBN: 978-3-642-27954-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics