Advertisement

Secure Computation, I/O-Efficient Algorithms and Distributed Signatures

  • Ivan Damgård
  • Jonas Kölker
  • Tomas Toft
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7178)

Abstract

We consider a setting where a set of n players use a set of m servers to store a large, private data set. Later the players decide on functions they want to compute on the data without the servers needing to know which computation is done, while the computation should be secure against a malicious adversary corrupting a constant fraction of the players and servers. Using packed secret sharing, the data can be stored in a compact way but will only be accessible in a block-wise fashion. We explore the possibility of using I/O-efficient algorithms to nevertheless compute on the data as efficiently as if random access was possible. We show that for sorting, priority queues and data mining, this can indeed be done. We show actively secure protocols of complexity within a constant factor of the passively secure solution. As a technical contribution towards this goal, we develop techniques for generating values of form r, g r for random secret-shared r ∈ ℤ q and g r in a group of order q. This costs a constant number of exponentiation per player per value generated, even if less than n/3 players are malicious. This can be used for efficient distributed computing of Schnorr signatures. We further develop the technique so we can sign secret data in a distributed fashion at essentially the same cost.

Keywords

Signature Scheme Secret Sharing Secure Protocol Secure Computation Byzantine Agreement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, A., Vitter, S., Jeffrey: The input/output complexity of sorting and related problems. Commun. ACM 31, 1116–1127 (1988)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Batcher, K.E.: Sorting networks and their applications. In: Proceedings of the Spring Joint Computer Conference, AFIPS 1968, April 30-May 2, pp. 307–314. ACM, New York (1968)Google Scholar
  3. 3.
    Beerliová-Trubíniová, Z., Hirt, M.: Perfectly-Secure MPC with Linear Communication Complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 1–10. ACM, New York (1988)CrossRefGoogle Scholar
  5. 5.
    Blakley, G.R., Meadows, C.: Security of Ramp Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 242–268. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  6. 6.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. Cryptology ePrint Archive, Report 2000/067, (2000), http://eprint.iacr.org/
  7. 7.
    Cramer, R., Damgård, I.B., de Haan, R.: Atomic Secure Multi-Party Multiplication with Low Communication. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 329–346. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Damgård, I.B., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally Secure Constant-Rounds Multi-Party Computation for Equality, Comparison, Bits and Exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Damgård, I., Kölker, J., Toft, T.: Secure computation, i/o-efficient algorithms and distributed signatures. Cryptology ePrint Archive (2011), http://eprint.iacr.org/
  10. 10.
    Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: FOCS, pp. 427–437 (1987)Google Scholar
  11. 11.
    Fitzi, M., Hirt, M.: Optimally efficient multi-valued byzantine agreement. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed Computing, PODC 2006, pp. 163–168. ACM, New York (2006)CrossRefGoogle Scholar
  12. 12.
    Franklin, M., Yung, M.: Communication complexity of secure computation (extended abstract). In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, STOC 1992, pp. 699–710. ACM, New York (1992)CrossRefGoogle Scholar
  13. 13.
    Goldwasser, S., Lindell, Y.: Secure multi-party computation without agreement. J. Cryptology 18(3), 247–287 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Goodrich, M.T.: Randomized shellsort: A simple oblivious sorting algorithm. In: SODA, pp. 1262–1277 (2010)Google Scholar
  15. 15.
    Goodrich, M.T., Mitzenmacher, M.: Mapreduce parallel cuckoo hashing and oblivious ram simulations. CoRR, abs/1007.1259 (2010)Google Scholar
  16. 16.
    Jagannathan, G., Wright, R.N.: Privacy-preserving distributed k-means clustering over arbitrarily partitioned data. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, KDD 2005, pp. 593–599. ACM, New York (2005)Google Scholar
  17. 17.
    Lindell, Y., Pinkas, B.: Privacy Preserving Data Mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  19. 19.
    Pratt, V.R.: Shellsort and Sorting Networks. Outstanding Dissertations in the Computer Sciences. Garland Publishing, New York (1972), http://www.inf.fh-flensburg.de/lang/algorithmen/sortieren/shell/shellen.htm Google Scholar
  20. 20.
    Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptology 4(3), 161–174 (1991)CrossRefzbMATHGoogle Scholar
  21. 21.
    Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Toft, T.: Secure datastructures based on multiparty computation. Cryptology ePrint Archive, Report 2011/081 (2011), http://eprint.iacr.org/

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ivan Damgård
    • 1
  • Jonas Kölker
    • 1
  • Tomas Toft
    • 1
  1. 1.Dept. of Computer ScienceAarhus UniversityDenmark

Personalised recommendations