Localized Electromagnetic Analysis of Cryptographic Implementations

  • Johann Heyszl
  • Stefan Mangard
  • Benedikt Heinz
  • Frederic Stumpf
  • Georg Sigl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7178)


High resolution inductive probes enable precise measurements of the electromagnetic field of small regions on integrated circuits. These precise measurements allow to distinguish the activity of registers on the circuit that are located at different distances to the probe. This location-dependent information can be exploited in side-channel analyses of cryptographic implementations. In particular, cryptographic algorithms where the usage of registers depends on secret information are affected by side-channel attacks using localized electromagnetic analysis. Binary exponentiation algorithms which are used in public key cryptography are typical examples for such algorithms. This article introduces the concept of localized electromagnetic analysis in general. Furthermore, we present a case study where we employ a template attack on an FPGA implementation of the elliptic curve scalar multiplication to prove that location-dependent leakage can be successfully exploited. Conventional countermeasures against side-channel attacks are ineffective against location-dependent side-channel leakage. As an effective general countermeasure, we promote that the assignment of registers to physical locations should be repeatedly randomized during execution.


Side-channel analysis electromagnetic near-field location-dependent leakage template attack FPGA ECC 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, D., Archambeault, B., Rao, J., Rohatgi, P.: The EM Side–channel(s). In: Kaliski Jr., B.S., Koç, C., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Chari, S., Rao, J., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç, C., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Coron, J.S.: Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems. In: Koç, C., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Fan, J., Guo, X., De Mulder, E., Schaumont, P., Preneel, B., Verbauwhede, I.: State-of-the-art of secure ECC implementations: a survey on known side-channel attacks and countermeasures. In: IEEE International Symposium on Hardware-Oriented Security and Trust, HOST 2010 (2010)Google Scholar
  5. 5.
    Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results. In: Koç, C., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Hofreiter, P., Laackmann, P.: Electromagnetic espionage from smart cards - attacks and countermeasures. Secure 6, 40–43 (2002)Google Scholar
  7. 7.
    Kirschbaum, M., Schmidt, J.M.: Learning from electromagnetic emanations - a case study for iMDPL. In: Workshop Proceedings COSADE 2011, pp. 50–55 (2011)Google Scholar
  8. 8.
    Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  9. 9.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    López, J., Dahab, R.: Fast Multiplication on Elliptic Curves over GF(2m) without Precomputation. In: Koç, C., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 316–327. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards. Advances in Information Security. Springer-Verlag New York, Inc., Secaucus (2007)zbMATHGoogle Scholar
  12. 12.
    Medwed, M., Oswald, M.E.: Template Attacks on ECDSA. In: Chung, K.-I., Sohn, K., Yung, M. (eds.) WISA 2008. LNCS, vol. 5379, pp. 14–27. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-Enhanced Power Analysis Collision Attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 125–139. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    National Institute of Standards and Technology: Recommended elliptic curves for federal government use (July 1999)Google Scholar
  15. 15.
    Quisquater, J.J., Samyde, D.: Electromagnetic Analysis (EMA): Measures and Counter-Measures for Smart Cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Real, D., Valette, F., Drissi, M.: Enhancing correlation electromagnetic attack using planar near-field cartography. In: Design, Automation Test in Europe Conference Exhibition, DATE 2009, pp. 628–633 (April 2009)Google Scholar
  17. 17.
    Sauvage, L., Guilley, S., Flament, F., Danger, J., Mathieu, Y.: Cross-correlation cartography. In: International Conference on Reconfigurable Computing and FPGAs (ReConFig 2010), pp. 268–273 (December 2010)Google Scholar
  18. 18.
    Sauvage, L., Guilley, S., Mathieu, Y.: Electromagnetic radiations of fpgas: High spatial resolution cartography and attack on a cryptographic module. ACM Trans. Reconfigurable Technol. Syst. 2, 4:1–4:24 (2009)Google Scholar
  19. 19.
    Schramm, K., Leander, G., Felke, P., Paar, C.: A Collision-Attack on AES. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 163–175. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Schramm, K., Wollinger, T., Paar, C.: A New Class of Collision Attacks and its Application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 206–222. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Skorobogatov, S.: Optical fault masking attacks. In: 2010 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 23–29 (August 2010)Google Scholar
  22. 22.
    Witteman, M., van Woudenberg, J., Menarini, F.: Defeating RSA Multiply-always and Message Blinding Countermeasures. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 77–88. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Johann Heyszl
    • 1
  • Stefan Mangard
    • 2
  • Benedikt Heinz
    • 1
  • Frederic Stumpf
    • 1
  • Georg Sigl
    • 3
  1. 1.Fraunhofer Research Institution AISECMunichGermany
  2. 2.Infineon Technologies AGMunichGermany
  3. 3.EI SECTechnische Universität MünchenMunichGermany

Personalised recommendations