Advertisement

Inferring Canonical Register Automata

  • Falk Howar
  • Bernhard Steffen
  • Bengt Jonsson
  • Sofia Cassel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7148)

Abstract

In this paper, we present an extension of active automata learning to register automata, an automaton model which is capable of expressing the influence of data on control flow. Register automata operate on an infinite data domain, whose values can be assigned to registers and compared for equality. Our active learning algorithm is unique in that it directly infers the effect of data values on control flow as part of the learning process. This effect is expressed by means of registers and guarded transitions in the resulting register automata models. The application of our algorithm to a small example indicates the impact of learning register automata models: Not only are the inferred models much more expressive than finite state machines, but the prototype implementation also drastically outperforms the classic L * algorithm, even when exploiting optimal data abstraction and symmetry reduction.

Keywords

Symmetry Reduction Automaton Learning Data Language Membership Query Data Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarts, F., Jonsson, B., Uijen, J.: Generating Models of Infinite-State Communication Protocols Using Regular Inference with Abstraction. In: Petrenko, A., Simão, A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 188–204. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Ammons, G., Bodik, R., Larus, J.: Mining specifications. In: Proc. 29th ACM Symp. on Principles of Programming Languages, pp. 4–16 (2002)Google Scholar
  3. 3.
    Angluin, D.: Learning regular sets from queries and counterexamples. Information and Computation 75(2), 87–106 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Berg, T., Jonsson, B., Raffelt, H.: Regular Inference for State Machines Using Domains with Equality Tests. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 317–331. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.): Model-Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  6. 6.
    Cassel, S., Howar, F., Jonsson, B., Merten, M., Steffen, B.: A Succinct Canonical Register Automaton Model. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 366–380. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)Google Scholar
  8. 8.
    Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S., Xiao, C.: The Daikon system for dynamic detection of likely invariants. Science of Computer Programming 69(1-3), 35–45 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model Generation by Moderated Regular Extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 80–95. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Howar, F., Steffen, B., Merten, M.: Automata Learning with Automated Alphabet Abstraction Refinement. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 263–277. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Huima, A.: Implementing Conformiq Qtronic. In: Petrenko, A., Veanes, M., Tretmans, J., Grieskamp, W. (eds.) TestCom/FATES 2007. LNCS, vol. 4581, pp. 1–12. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Hungar, H., Niese, O., Steffen, B.: Domain-Specific Optimization in Automata Learning. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 315–327. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Jonsson, B., Parrow, J.: Deciding bisimulation equivalences for a class of non-finite-state programs. Information and Computation 107(2), 272–302 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kaminski, M., Francez, N.: Finite-memory automata. Theoretical Computer Science 134(2), 329–363 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lo, D., Maoz, S.: Scenario-based and value-based specification mining: better together. In: 25th IEEE/ACM Int. Conf. on Automated Software Engineering, ASE 2010, Antwerp, Belgium, pp. 387–396. ACM (2010)Google Scholar
  16. 16.
    Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral models. In: Proc. ICSE 2008: 30th Int. Conf. on Software Enginering, pp. 501–510 (2008)Google Scholar
  17. 17.
    Mariani, L., Pezzé, M.: Dynamic detection of COTS components incompatibility. IEEE Software 24(5), 76–85 (2007)CrossRefGoogle Scholar
  18. 18.
    Merten, M., Steffen, B., Howar, F., Margaria, T.: Next Generation LearnLib. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences. Information and Computation 103(2), 299–347 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Saint-Andre, P.: Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence. RFC 6121 (Proposed Standard) (March 2011)Google Scholar
  21. 21.
    Sakamoto, H.: Learning Simple Deterministic Finite-Memory Automata. In: Li, M. (ed.) ALT 1997. LNCS, vol. 1316, pp. 416–431. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  22. 22.
    Shu, G., Lee, D.: Testing security properties of protocol implementations - a machine learning based approach. In: Proc. ICDCS 2007, 27th IEEE Int. Conf. on Distributed Computing Systems, Toronto, Ontario. IEEE Computer Society (2007)Google Scholar
  23. 23.
    Steffen, B., Howar, F., Merten, M.: Introduction to Active Automata Learning from a Practical Perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 256–296. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Tretmans, J.: Model-Based Testing and Some Steps towards Test-Based Modelling. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 297–326. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Wolper, P.: Expressing interesting properties of programs in propositional temporal logic (extended abstract). In: Proc. 13th ACM Symp. on Principles of Programming Languages, pp. 184–193 (January 1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Falk Howar
    • 1
  • Bernhard Steffen
    • 1
  • Bengt Jonsson
    • 2
  • Sofia Cassel
    • 2
  1. 1.Programming SystemsTechnical University DortmundDortmundGermany
  2. 2.Dept. of Information TechnologyUppsala UniversitySweden

Personalised recommendations