Synthesizing Protocols for Digital Contract Signing

  • Krishnendu Chatterjee
  • Vishwanath Raman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7148)

Abstract

We study the automatic synthesis of fair non-repudiation protocols, a class of fair exchange protocols, used for digital contract signing. First, we show how to specify the objectives of the participating agents, the trusted third party (TTP) and the protocols as path formulas in Linear Temporal Logic (LTL) and prove that the satisfaction of the objectives of the agents and the TTP imply satisfaction of the protocol objectives. We then show that weak (co-operative) co-synthesis and classical (strictly competitive) co-synthesis fail in synthesizing these protocols, whereas assume-guarantee synthesis (AGS) succeeds. We demonstrate the success of assume-guarantee synthesis as follows: (a) any solution of assume-guarantee synthesis is attack-free; no subset of participants can violate the objectives of the other participants without violating their own objectives; (b) the Asokan-Shoup-Waidner (ASW) certified mail protocol that has known vulnerabilities is not a solution of AGS; and (c) the Kremer-Markowitch (KM) non-repudiation protocol is a solution of AGS. To our knowledge this is the first application of synthesis to fair non-repudiation protocols, and our results show how synthesis can generate correct protocols and automatically discover vulnerabilities. The solution to assume-guarantee synthesis can be computed efficiently as the secure equilibrium solution of three-player graph games.

Keywords

Model Check Security Protocol Linear Temporal Logic Trust Third Party Linear Temporal Logic Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Henzinger, T.A., Mang, F.Y.C., Qadeer, S., Rajamani, S.K., Tasiran, S.: Mocha: Modularity in Model Checking. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 521–525. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Asokan, N., Shoup, V., Waidner, M.: Asynchronous protocols for optimistic fair exchange. In: IEEE S&P, pp. 86–99 (1998)Google Scholar
  3. 3.
    Chadha, R., Kanovich, M.I., Scedrov, A.: Inductive methods and contract-signing protocols. In: CCS, pp. 176–185. ACM (2001)Google Scholar
  4. 4.
    Chadha, R., Mitchell, J.C., Scedrov, A., Shmatikov, V.: Contract Signing, Optimism, and Advantage. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 366–382. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Chatterjee, K., Henzinger, T.A.: Assume-Guarantee Synthesis. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 261–275. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Games with secure equilibria. Theor. Comput. Sci. 365(1-2), 67–82 (2006)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chatterjee, K., Raman, V.: Assume-guarantee synthesis for digital contract signing. CoRR, abs/1004.2697 (2010)Google Scholar
  8. 8.
    Clarke, E.M., Emerson, E.A.: Design and Synthesis of Synchronization Skeletons using Branching-Time Temporal Logic. In: Engeler, E. (ed.) Logic of Programs 1979. LNCS, vol. 125, pp. 52–71. Springer, Heidelberg (1981)Google Scholar
  9. 9.
    Even, S., Yacobi, Y.: Relations among public key signature systems, technical report 175. Technical report, Technion, Haifa, Israel (1980)Google Scholar
  10. 10.
    Garay, J.A., Jakobsson, M., MacKenzie, P.D.: Abuse-Free Optimistic Contract Signing. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 449–466. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Kremer, S., Raskin, J.-F.: Game analysis of abuse-free contract signing. In: CSFW, pp. 206–220. IEEE (2002)Google Scholar
  12. 12.
    Kremer, S., Raskin, J.-F.: A game-based verification of non-repudiation and fair exchange protocols. JCS 11(3), 399–430 (2003)CrossRefGoogle Scholar
  13. 13.
    Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer, New York (1991)MATHGoogle Scholar
  14. 14.
    Markowitch, O., Gollmann, D., Kremer, S.: On Fairness in Exchange Protocols. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 451–464. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Markowitch, O., Kremer, S.: An Optimistic Non-repudiation Protocol with Transparent Trusted Third Party. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200, pp. 363–378. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Pagnia, H., Gärtner, F.C.: On the impossibility of fair exchange without a trusted third party. Technical report, Darmstadt (1999)Google Scholar
  17. 17.
    Perrig, A., Song, D.X.: A first step towards the automatic generation of security protocols. In: NDSS (2000)Google Scholar
  18. 18.
    Pnueli, A.: The temporal logic of programs. In: Proc. 18th IEEE Symp. Found. of Comp. Sci., pp. 46–57. IEEE Computer Society Press (1977)Google Scholar
  19. 19.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–190. ACM Press (1989)Google Scholar
  20. 20.
    Ramadge, P., Wonham, W.: Supervisory control of a class of discrete event processes. Siam J. Control and Optimization 25(1) (1987)Google Scholar
  21. 21.
    Saïdi, H.: Toward automatic synthesis of security protocols. AAAI Technical Report, SS-02-05 (2002)Google Scholar
  22. 22.
    Shmatikov, V., Mitchell, J.C.: Finite-state analysis of two contract signing protocols. Theor. Comput. Sci. 283(2), 419–450 (2002)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Song, D., Berezin, S., Perrig, A.: Athena: a novel approach to efficient automatic security protocol analysis. JCS 9 (2001)Google Scholar
  24. 24.
    Thomas, W.: Languages, automata, and logic, pp. 389–455 (1997)Google Scholar
  25. 25.
    Zhou, J., Gollmann, D.: An efficient non-repudiation protocol. In: PCSFW, pp. 126–132. IEEE Computer Society Press (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Krishnendu Chatterjee
    • 1
  • Vishwanath Raman
    • 2
  1. 1.IST (Institute of Science and Technology Austria)Austria
  2. 2.Carnegie Mellon Silicon ValleyMoffett FieldUSA

Personalised recommendations