Advertisement

Abstract

We present a range of exact techniques within two-dimensional conformal field theory (CFT), using the Q-state Potts and the O(n) models as exploratory tools. Both are equivalent to models of oriented loops, which act as level lines of a height model. The height model can be treated via a geometrical Coulomb gas construction, giving access to exact bulk and boundary properties. We detail the derivation of critical exponents and relate their physical interpretation to properties of clusters and loops. The underlying Temperley-Lieb algebra is discussed, and we show how the various topological sectors should be combined to yield exact continuum limit partition functions. These give access to probabilistic results, in particular to crossing formulae in percolation. Finally, we discuss how these results can be extended to classes of new conformally invariant boundary conditions, in which the weights of boundary-touching loops are modified.

Keywords

Partition Function Transfer Matrix Critical Exponent Vertex Operator Conformal Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982) zbMATHGoogle Scholar
  2. 2.
    Baxter, R.J., Kelland, S.B., Wu, F.Y.: Equivalence of the Potts model or Whitney polynomial with an ice-type model. J. Phys. A, Math. Gen. 9, 397 (1975) ADSCrossRefGoogle Scholar
  3. 3.
    Cardy, J.L.: Conformal invariance and surface critical behaviour. Nucl. Phys. B 240, 514 (1984) ADSCrossRefGoogle Scholar
  4. 4.
    Cardy, J.L.: Operator content of two-dimensional conformally invariant theories. Nucl. Phys. B 270, 186 (1986) MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Cardy, J.L.: Effect of boundary conditions on the operator content of two-dimensional conformally invariant theories. Nucl. Phys. B 275, 200 (1986) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Cardy, J.L.: The O(n) model on the annulus. J. Stat. Phys. 125, 1 (2006) MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    den Nijs, M.: Extended scaling relations for the magnetic critical exponents of the Potts model. Phys. Rev. B 27, 1674 (1983) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    den Nijs, M.: Extended scaling relations for the chiral and cubic crossover exponents. J. Phys. A, Math. Gen. 17, 295 (1984) CrossRefGoogle Scholar
  9. 9.
    di Francesco, P., Saleur, H., Zuber, J.B.: Relations between the Coulomb gas picture and conformal invariance of two-dimensional critical models. J. Stat. Phys. 49, 57 (1987) ADSzbMATHCrossRefGoogle Scholar
  10. 10.
    di Francesco, P., Mathieu, P., Sénéchal, D.: Conformal Field-Theory. Springer, Heidelberg (1997) zbMATHCrossRefGoogle Scholar
  11. 11.
    Domany, E., Mukamel, D., Nienhuis, B., Schwimmer, A.: Duality relations and equivalences for models with O(n) and cubic symmetry. Nucl. Phys. B 190, 279 (1981) ADSCrossRefGoogle Scholar
  12. 12.
    Dubail, J., Jacobsen, J.L., Saleur, H.: Conformal two-boundary loop model on the annulus. Nucl. Phys. B 813, 430 (2009) MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    Duplantier, B., Saleur, H.: Exact critical properties of two-dimensional dense self-avoiding walks. Nucl. Phys. B 290, 291 (1987) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Fortuin, C.M., Kasteleyn, P.W.: On the random-cluster model. I. Introduction and relation to other models. Physica 57, 536 (1972) MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Jacobsen, J.L.: Conformal field theory applied to loop models. In: Guttmann, A.J. (ed.) Polygons, Polyominoes and Polycubes. Lecture Notes in Physics, vol. 775, pp. 347–424. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  16. 16.
    Jacobsen, J.L., Kondev, J.: Field theory of compact polymers on the square lattice. Nucl. Phys. B 532, 635 (1998) MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    Jacobsen, J.L., Saleur, H.: Conformal boundary loop models. Nucl. Phys. B 788, 137 (2008) MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Jacobsen, J.L., Saleur, H.: Combinatorial aspects of boundary loop models. J. Stat. Mech. P01021 (2008) Google Scholar
  19. 19.
    José, J.V., Kadanoff, L.P., Kirkpatrick, S., Nelson, D.R.: Renormalization, vortices, and symmetry-breaking perturbations in the two-dimensional planar model. Phys. Rev. B 16, 1217 (1977) ADSCrossRefGoogle Scholar
  20. 20.
    Kasteleyn, P.W., Fortuin, C.M.: Phase transitions in lattice systems with random local properties. J. Phys. Soc. Jpn. 26(Suppl.), 11 (1969) ADSGoogle Scholar
  21. 21.
    Kondev, J., Henley, C.L.: Four-coloring model on the square lattice: a critical ground state. Phys. Rev. B 52, 6628 (1995) ADSCrossRefGoogle Scholar
  22. 22.
    Kondev, J.: Liouville field theory of fluctuating loops. Phys. Rev. Lett. 78, 4320 (1997) ADSCrossRefGoogle Scholar
  23. 23.
    Martin, P.P., Saleur, H.: The blob algebra and the periodic Temperley-Lieb algebra. Lett. Math. Phys. 30, 189 (1994) MathSciNetADSzbMATHGoogle Scholar
  24. 24.
    Nienhuis, B.: Exact critical point and critical exponents of O(n) models in two dimensions. Phys. Rev. Lett. 49, 1062 (1982) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Nienhuis, B.: Critical behaviour of two-dimensional spin models and charge asymmetry in the Coulomb gas. J. Stat. Phys. 34, 731 (1984) MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. 26.
    Nienhuis, B.: Coulomb gas formulations of two-dimensional phase transitions. In: Domb, C., Lebowitz, J.L. (eds.) Phase Transitions and Critical Phenomena, vol. 11. Academic Press, London (1987) Google Scholar
  27. 27.
    Nienhuis, B.: Exact methods in low-dimensional statistical physics and quantum computing. In: Jacobsen, J., et al. (eds.) Les Houches Summer School, Session LXXXIX. Oxford University Press, London (2009) Google Scholar
  28. 28.
    Pasquier, V., Saleur, H.: Common structures between finite systems and conformal field theories through quantum groups. Nucl. Phys. B 330, 523 (1990) MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    Potts, R.B.: Some generalized order-disorder transformations. Math. Proc. Camb. Philos. Soc. 48, 106 (1952) MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. 30.
    Richard, J.-F., Jacobsen, J.L.: Character decomposition of Potts model partition functions, I: Cyclic geometry. Nucl. Phys. B 750, 250 (2006) MathSciNetADSzbMATHCrossRefGoogle Scholar
  31. 31.
    Saleur, H., Bauer, M.: On some relations between local height probabilities and conformal invariance. Nucl. Phys. B 320, 591 (1989) MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    Temperley, H.N.V., Lieb, E.H.: Relations between the percolation and colouring problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the percolation problem. Proc. R. Soc. Lond. A 322, 251 (1971) MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. 33.
    Yung, C.M., Batchelor, M.T.: O(n) model on the honeycomb lattice via reflection matrices: Surface critical behaviour. Nucl. Phys. B 453, 552 (1995) MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique de l’École Normale SupérieureParisFrance

Personalised recommendations