Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 853))

Abstract

An easily readable introduction to the main concepts and techniques of conformal invariance is provided. Starting from the global scale-invariance at a critical point, it is argued, through the local conformal Ward identities, that under mild conditions an extension to a local form of scale-invariance, namely conformally invariance, is in general possible. In two space dimensions, the particular role of the infinite-dimensional Lie algebra of conformal transformations is outlined and the main concepts, namely those of a primary scaling operator, the conformal energy-momentum tensor, the Virasoro algebra and the central charge and the main facts of their unitary and/or minimal representations will be presented. Some simple applications for the explicit calculation of two-point functions will be given. The free boson will be used as a paradigmatic illustration and we shall close with an outline of surface critical phenomena and their description in terms of boundary conformal field-theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Unless explicitly stated otherwise, we shall choose units such that the Boltzmann constant k B = 1.

  2. 2.

    For example, in the 2D Ising universality class, one has x σ = 1/8 and x ε = 1/2.

  3. 3.

    In the literature, the alternative notation: \(h,\bar{h}\) for the conformal weights and \(\varDelta= h +\bar{h}\) for the scaling dimension, is also met with frequently.

  4. 4.

    Although this algebra was first defined by É. Cartan in 1909, it is unfortunately often referred to as ‘Witt algebra’. Witt studied this algebra only much later (in the 1930s), over fields of characteristic p > 0, when the algebra is spanned by the n with − 1 ≤ np − 2.

  5. 5.

    With the normalisation ϕ ab = δ ab in (1.16), the coefficient \( {{C}_{{123}}} \) is universal and not arbitrary.

  6. 6.

    Equation (1.25) borrows from the theory of elasticity, where T μν is called ‘stress-energy tensor’. This analogy is unlikely to be valid for theories with long-range interactions.

  7. 7.

    To dissipate any belief that linear, massless dispersion relations would only belong to the fictitious worlds of the stringy theorist: exactly this kind of dispersion relation is actually realised in graphene, where the ‘carriers of the charge behave as (2+1)D ultra-relativistic particules without mass’ [32].

  8. 8.

    The physical content of a mathematical classification has still to be established by external evidence. To quote a well-known example, the periodic system of the chemical elements follows from the representation theory of the rotation Lie group \(\mathfrak{so}(3)\). Still, that classification alone does not tell you that the 8th element keeps fires burning and allows vertebrates to breathe or that the 79th element has since prehistoric times attracted the greed of many.

  9. 9.

    A good example of this is the Fermi theory of weak interactions, where the momentum-dependence of the propagators of the intermediate weak bosons W ± and Z of the unified electroweak theory can be neglected for energies ≪ M W, Z c 2≈80 [GeV].

  10. 10.

    Note that in this expression the factor \((\operatorname{Im}\tau )^{-1/2}\) of (1.84) has disappeared.

  11. 11.

    We do not require in this book the much more rich phenomenology of surface critical behaviour in d ≥ 3 dimensions, with its ‘extraordinary’ and ‘special’ transitions.

  12. 12.

    One restricts here and in what follows to scaling operators which are scalars deep in the bulk, with \(\varDelta=\overline{\varDelta}=x/2\).

  13. 13.

    It remains perfectly possible to describe by (1.134) a two-point function such as 〈σε〉 with a fixed non-vanishing magnetisation imposed at the surface and x σ x ε , which of course vanishes in the bulk.

References

  1. Alcaraz, F.C., Grimm, U., Rittenberg, V.: The XXZ Heisenberg chain, conformal invariance and the operator content of c < 1 systems. Nucl. Phys. B 316, 735 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  2. Alcaraz, F.C., Levine, E., Rittenberg, V.: Conformal invariance and its breaking in a stochastic model of a fluctuating interface. J. Stat. Mech., 08003 (2006)

    Google Scholar 

  3. Baake, M., Christe, P., Rittenberg, V.: Higher spin conserved currents in c = 1 conformally invariant systems. Nucl. Phys. B 300, 637 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  4. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)

    MATH  Google Scholar 

  5. Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-dimensional quantum field-theory. Nucl. Phys. B 241, 333 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Blumenhagen, R., Plauschinn, E.: Introduction to Conformal Field-Theory. Lecture Notes in Physics, vol. 779. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

  7. Boyer, T.H.: Conserved currents, renormalization and the Ward identity. Ann. of Phys. 44, 1 (1967)

    Article  ADS  Google Scholar 

  8. Calabrese, P., Cardy, J.L.: Time-dependence of correlation functions following a quantum quench. Phys. Rev. Lett. 96, 136801 (2006)

    Article  ADS  Google Scholar 

  9. Calabrese, P., Cardy, J.L.: Entanglement and correlation functions following a local quench: a conformal field theory approach. J. Stat. Mech., 10004 (2007)

    Google Scholar 

  10. Cardy, J.L.: Conformal invariance and surface critical behaviour. Nucl. Phys. B 240, 514 (1984)

    Article  ADS  Google Scholar 

  11. Cardy, J.L.: Conformal invariance. In: Domb, C., Lebowitz, J.L. (eds.) Phase Transitions and Critical Phenomena, vol. 11. Academic Press, London (1986)

    Google Scholar 

  12. Cardy, J.L.: Effect of boundary conditions on the operator content of two-dimensional conformally invariant theories. Nucl. Phys. B 275, 200 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  13. Cardy, J.L.: Boundary conditions, fusion rules and the Verlinde formula. Nucl. Phys. B 324, 581 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  14. Cardy, J.L.: Conformal invariance and statistical mechanics. In: Brézin, E., Zinn-Justin, J. (eds.) Fields, Strings and Critical Phenomena, Les Houches XLIX. North-Holland, Amsterdam (1990)

    Google Scholar 

  15. Cardy, J.L.: Scaling and Renormalization in Statistical Physics. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  16. Cardy, J.L.: Boundary conformal field theory. In: Encyclopedia of Mathematical Physics. Elsevier, Amsterdam (2006)

    Google Scholar 

  17. Cardy, J.L.: Conformal field theory and statistical mechanics. In: Exact Methods in Low-Dimensional Statistical Physics and Quantum Computing, Les Houches XLIX. North-Holland, Amsterdam (2008)

    Google Scholar 

  18. Chatelain, C., Berche, B.: Tests of conformal invariance in randomness-induced second-order phase transitions. Phys. Rev. E 58, 6899 (1998)

    Article  ADS  Google Scholar 

  19. di Francesco, P., Mathieu, P., Sénéchal, D.: Conformal Field-Theory. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  20. Diehl, H.W.: Field-theoretical approach to critical phenomena at surfaces. In: Domb, C., Lebowitz, J.L. (eds.) Phase Transitions and Critical Phenomena, vol. 10. Academic Press, London (1987)

    Google Scholar 

  21. Drewitz, A., Leidl, R., Burkhardt, T.W., Diehl, H.W.: Surface critical behaviour of binary alloys and antiferromagnets: dependence of the universality class on surface orientation. Phys. Rev. Lett. 78, 1090 (1997)

    Article  ADS  Google Scholar 

  22. Drouffe, J.-M., Itzykson, C.: Statistical Field-Theory, vol. 2. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  23. Fisher, M.E.: Scaling, universality and renormalisation group theory. In: Hahne, F.J.W. (ed.) Critical Phenomena. Lecture Notes in Physics, vol. 186, pp. 1–13. Springer, Heidelberg (1983)

    Chapter  Google Scholar 

  24. Gaudin, M.: La Fonction d’onde de Bethe. Masson, Paris (1983)

    MATH  Google Scholar 

  25. Grandati, Y.: Éléments d’introduction à l’invariance conforme. Ann. Physique 17, 159 (1992)

    Article  ADS  Google Scholar 

  26. Henkel, M.: Phase Transitions and Conformal Invariance. Springer, Heidelberg (1999)

    Book  Google Scholar 

  27. Henkel, M., Patkós, A.: Critical exponents of defective Ising models and the U(1) Kac-Moody-Virasoro algebras. Nucl. Phys. B 285, 29 (1987)

    Article  ADS  Google Scholar 

  28. Henkel, M., Pleimling, M.: Non-equilibrium Phase Transitions, vol. 2. Ageing and Dynamical Scaling Far from Equilibrium. Springer, Heidelberg (2010)

    Book  Google Scholar 

  29. Henkel, M., Hinrichsen, H., Lübeck, S.: Non-equilibrium Phase Transitions, vol. 1. Absorbing Phase Transitions. Springer, Heidelberg (2009)

    Google Scholar 

  30. Itzykson, C., Drouffe, J.-M.: Théorie Statistique des Champs, vol. 2. InterÉditions/CNRS, Paris (1989)

    Google Scholar 

  31. Karevski, D., Henkel, M.: Finite-size effects in layered magnetic systems. Phys. Rev. B 55, 6429 (1995)

    Article  ADS  Google Scholar 

  32. Neto, A.H.C., Guinea, F., Peres, N.M.R., Novosolev, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  33. Oshikawa, M., Affleck, I.: Boundary conformal field theory approach to the two-dimensional critical Ising model with a defect line. Nucl. Phys. B 495, 533 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Petkova, V., Zuber, J.-B.: Conformal boundary conditions and what they teach us. In: Horváth, Z., Palla, L. (eds.) Non-perturbative Quantum Field Theoretic Methods and Their Applications. World Scientific, Singapore (2001)

    Google Scholar 

  35. Pleimling, M.: Critical phenomena at perfect and non-perfect surfaces. J. Phys. A, Math. Gen. 37, 79 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  36. Pleimling, M., Selke, W.: Ising cubes with enhanced surface couplings. Phys. Rev. E 61, 933 (2000)

    Article  ADS  Google Scholar 

  37. Polchinski, J.: Scale and conformal invariance in quantum field theory. Nucl. Phys. B 303, 226 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  38. Riva, V., Cardy, J.L.: Scale and conformal invariance in field theory: a physical counterexample. Phys. Lett. B 622, 339 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Schottenloher, M.: A Mathematical Introduction to Conformal Field-Theory. Lecture Notes in Physics, vol. 759. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  40. Yeomans, J.M.: Statistical Mechanics of Phase Transitions. Oxford University Press, Oxford (1992)

    Google Scholar 

  41. Zuber, J.-B.: An introduction of conformal field-theory. Acta Phys. Pol. B 26, 1785 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malte Henkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Henkel, M., Karevski, D. (2012). A Short Introduction to Conformal Invariance. In: Henkel, M., Karevski, D. (eds) Conformal Invariance: an Introduction to Loops, Interfaces and Stochastic Loewner Evolution. Lecture Notes in Physics, vol 853. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27934-8_1

Download citation

Publish with us

Policies and ethics