Skip to main content

The membrane sources of macroautophagy

  • Chapter
  • First Online:
Protein Quality Control in Neurodegenerative Diseases

Part of the book series: Research and Perspectives in Alzheimer's Disease ((ALZHEIMER))

  • 924 Accesses

Abstract

Macroautophagy (hereafter called autophagy) is a catabolic, homeostatic process that is ubiquitous in eukaryotes and is conserved from yeast to human. The morphological hallmark of autophagy is the formation of cytosolic double-membrane vesicles that sequester cytoplasm and deliver it to the vacuole (the analog of the lysosome), where the cargos are degraded and the breakdown products are released through membrane permeases for reuse. Autophagy is connected to a wide range of pathophysiological conditions. Accordingly, it has attracted considerable attention in the last decade. A major, still unresolved, question concerns the origin of the membrane(s) that contribute to the formation of the autophagosome and the mechanism through which this compartment is generated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NT (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182:685–701

    Article  PubMed  CAS  Google Scholar 

  • Cheong H, Yorimitsu T, Reggiori F, Legakis JE, Wang C-W, Klionsky DJ (2005) Atg17 regulates the magnitude of the autophagic response. Mol Biol Cell 16:3438–3453

    Article  PubMed  CAS  Google Scholar 

  • Deter RL, de Duve C (1967) Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol 33:437–449

    Article  PubMed  CAS  Google Scholar 

  • Deter RL, Baudhuin P, de Duve C (1967) Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J Cell Biol 35:C11–16

    Article  PubMed  CAS  Google Scholar 

  • Dunn WA Jr (1990) Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol 110:1923–1933

    Article  PubMed  Google Scholar 

  • Fengsrud M, Erichsen ES, Berg TO, Raiborg C, Seglen PO (2000) Ultrastructural characterization of the delimiting membranes of isolated autophagosomes and amphisomes by freeze-fracture electron microscopy. Eur J Cell Biol 79:871–882

    Article  PubMed  CAS  Google Scholar 

  • Geng J, Nair U, Yasumura-Yorimitsu K, Klionsky DJ (2010) Post-Golgi Sec proteins are required for autophagy in Saccharomyces cerevisiae. Mol Biol Cell 21:2257–2269

    Article  PubMed  CAS  Google Scholar 

  • Guan J, Stromhaug PE, George MD, Habibzadegah-Tari P, Bevan A, Dunn WA Jr, Klionsky DJ (2001) Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris. Mol Biol Cell 12:3821–3838

    PubMed  CAS  Google Scholar 

  • Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, Lippincott-Schwartz J (2010) Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141:656–667

    Article  PubMed  CAS  Google Scholar 

  • Hamasaki M, Noda T, Ohsumi Y (2003) The early secretory pathway contributes to autophagy in yeast. Cell Struct Funct 28:49–54

    Article  PubMed  CAS  Google Scholar 

  • He C, Song H, Yorimitsu T, Monastyrska I, Yen W-L, Legakis JE, Klionsky DJ (2006) Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast. J Cell Biol 175:925–935

    Article  PubMed  CAS  Google Scholar 

  • He C, Baba M, Cao Y, Klionsky DJ (2008) Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy. Mol Biol Cell 19:5506–5516

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Klionsky DJ (2007) Autophagy and human disease. Cell Cycle 6:1837–1849

    Article  PubMed  CAS  Google Scholar 

  • Ishihara N, Hamasaki M, Yokota S, Suzuki K, Kamada Y, Kihara A, Yoshimori T, Noda T, Ohsumi Y (2001) Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol Biol Cell 12:3690–3702

    PubMed  CAS  Google Scholar 

  • Jaeken L, Thines-Sempoux D (1981) A three-dimensional study of organelle interrelationships in regenerating rat liver. 5. Autophagy. Cell Biol Int Rep 5:253–260

    Article  PubMed  CAS  Google Scholar 

  • Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y (2000) Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150:1507–1513

    Article  PubMed  CAS  Google Scholar 

  • Kametaka S, Okano T, Ohsumi M, Ohsumi Y (1998) Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J Biol Chem 273:22284–22291

    Article  PubMed  CAS  Google Scholar 

  • Kihara A, Noda T, Ishihara N, Ohsumi Y (2001) Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 152:519–530

    Article  PubMed  CAS  Google Scholar 

  • Kim DW, Sacher M, Scarpa A, Quinn AM, Ferro-Novick S (1999) High-copy suppressor analysis reveals a physical interaction between Sec34p and Sec35p, a protein implicated in vesicle docking. Mol Biol Cell 10:3317–3329

    PubMed  CAS  Google Scholar 

  • Kim J, Kamada Y, Stromhaug PE, Guan J, Hefner-Gravink A, Baba M, Scott SV, Ohsumi Y, Dunn WA Jr, Klionsky DJ (2001) Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. J Cell Biol 153:381–396

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8:931–937

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ (2011) The autophagosome is overrated! Autophagy 7:353–354

    Article  PubMed  Google Scholar 

  • Legakis JE, Yen W-L, Klionsky DJ (2007) A cycling protein complex required for selective autophagy. Autophagy 3:422–432

    PubMed  CAS  Google Scholar 

  • Locke M, Sykes AK (1975) The role of the Golgi complex in the isolation and digestion of organelles. Tissue Cell 7:143–158

    Article  PubMed  CAS  Google Scholar 

  • Lynch-Day MA, Bhandari D, Menon S, Huang J, Cai H, Bartholomew CR, Brumell JH, Ferro-Novick S, Klionsky DJ (2010) Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy. Proc Natl Acad Sci USA 107:7811–7816

    Article  PubMed  CAS  Google Scholar 

  • Mari M, Griffith J, Rieter E, Krishnappa L, Klionsky DJ, Reggiori F (2010) An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J Cell Biol 190:1005–1022

    Article  PubMed  CAS  Google Scholar 

  • Monastyrska I, He C, Geng J, Hoppe AD, Li Z, Klionsky DJ (2008) Arp2 links autophagic machinery with the actin cytoskeleton. Mol Biol Cell 19:1962–1975

    Article  PubMed  CAS  Google Scholar 

  • Nazarko TY, Huang J, Nicaud JM, Klionsky DJ, Sibirny AA (2005) Trs85 is required for macroautophagy, pexophagy and cytoplasm to vacuole targeting in Yarrowia lipolytica and Saccharomyces cerevisiae. Autophagy 1:37–45

    Article  PubMed  CAS  Google Scholar 

  • Noda T, Kim J, Huang W-P, Baba M, Tokunaga C, Ohsumi Y, Klionsky DJ (2000) Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol 148:465–480

    Article  PubMed  CAS  Google Scholar 

  • Ram RJ, Li B, Kaiser CA (2002) Identification of Sec36p, Sec37p, and Sec38p: components of yeast complex that contains Sec34p and Sec35p. Mol Biol Cell 13:1484–1500

    Article  PubMed  CAS  Google Scholar 

  • Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein DC (2010) Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol 12:747–757

    Article  PubMed  CAS  Google Scholar 

  • Reggiori F (2006) Membrane origin for autophagy. Curr Top Dev Biol 74:1–30

    Article  PubMed  CAS  Google Scholar 

  • Reggiori F, Tucker KA, Stromhaug PE, Klionsky DJ (2004a) The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell 6:79–90

    Article  PubMed  CAS  Google Scholar 

  • Reggiori F, Wang C-W, Nair U, Shintani T, Abeliovich H, Klionsky DJ (2004b) Early stages of the secretory pathway, but not endosomes, are required for Cvt vesicle and autophagosome assembly in Saccharomyces cerevisiae. Mol Biol Cell 15:2189–2204

    Article  PubMed  CAS  Google Scholar 

  • Reggiori F, Shintani T, Nair U, Klionsky DJ (2005) Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts. Autophagy 1:101–109

    Article  PubMed  CAS  Google Scholar 

  • Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306:990–995

    Article  PubMed  CAS  Google Scholar 

  • Shorer H, Amar N, Meerson A, Elazar Z (2005) Modulation of N-ethylmaleimide-sensitive factor activity upon amino acid deprivation. J Biol Chem 280:16219–16226

    Article  PubMed  CAS  Google Scholar 

  • Suvorova ES, Duden R, Lupashin VV (2002) The Sec34/Sec35p complex, a Ypt1p effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins. J Cell Biol 157:631–643

    Article  PubMed  CAS  Google Scholar 

  • Tucker KA, Reggiori F, Dunn WA Jr, Klionsky DJ (2003) Atg23 is essential for the cytoplasm to vacuole targeting pathway and efficient autophagy but not pexophagy. J Biol Chem 278:48445–48452

    Article  PubMed  CAS  Google Scholar 

  • VanRheenen SM, Cao X, Sapperstein SK, Chiang EC, Lupashin VV, Barlowe C, Waters MG (1999) Sec34p, a protein required for vesicle tethering to the yeast Golgi apparatus, is in a complex with Sec35p. J Cell Biol 147:729–742

    Article  PubMed  CAS  Google Scholar 

  • Wang C-W, Kim J, Huang W-P, Abeliovich H, Stromhaug PE, Dunn WA Jr, Klionsky DJ (2001) Apg2 is a novel protein required for the cytoplasm to vacuole targeting, autophagy, and pexophagy pathways. J Biol Chem 276:30442–30451

    Article  PubMed  CAS  Google Scholar 

  • Whyte JR, Munro S (2001) The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev Cell 1:527–537

    Article  PubMed  CAS  Google Scholar 

  • Yen W-L, Legakis JE, Nair U, Klionsky DJ (2007) Atg27 is required for autophagy-dependent cycling of Atg9. Mol Biol Cell 18:581–593

    Article  PubMed  CAS  Google Scholar 

  • Yen W-L, Shintani T, Nair U, Cao Y, Richardson BC, Li Z, Hughson FM, Baba M, Klionsky DJ (2010) The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. J Cell Biol 188:101–114

    Article  PubMed  CAS  Google Scholar 

  • Yorimitsu T, Klionsky DJ (2005) Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway. Mol Biol Cell 16:1593–1605

    Article  PubMed  CAS  Google Scholar 

  • Young ARJ, Chan EYW, Hu XW, Köchl R, Crawshaw SG, High S, Hailey DW, Lippincott-Schwartz J, Tooze SA (2006) Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci 119:3888–3900

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Klionsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klionsky, D.J., Lynch-Day, M.A., Geng, J., Yen, WL. (2013). The membrane sources of macroautophagy. In: Morimoto, R., Christen, Y. (eds) Protein Quality Control in Neurodegenerative Diseases. Research and Perspectives in Alzheimer's Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27928-7_4

Download citation

Publish with us

Policies and ethics