Advertisement

Proteostasis and the aging pathways

  • Ian Nicastro
  • Andrew Dillin
Chapter
Part of the Research and Perspectives in Alzheimer's Disease book series (ALZHEIMER)

Abstract

Aging is defined as the continuous accumulation of changes in an organism over time, arising intrinsically as well as through interaction with the environment. Some of these changes are harmful to the maintenance of homeostasis and render an individual more susceptible to diseases and disorders. Eventually, accumulation of enough of these changes negatively impacts an organism’s ability to respond to stresses and sets in motion a cascade of events that eventually ends in death. Aging is a universal condition that affects all life; however, different organisms age at remarkably different rates. This observation suggests that aging is not simply a stochastic response but instead has a powerful element of genetic mechanism. In seeking to understand why we age, there is potential for discovering strategies that might delay this inevitable process.

Keywords

Dietary Restriction Ubiquitin Proteasome System Heat Shock Response Heat Shock Factor Life Span Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. An JH, Blackwell TK (2003) SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev 17:1882–1893PubMedCrossRefGoogle Scholar
  2. Anckar J, Sistonen L (2011) Regulation of HSF1 function in the heat stress response: implications in aging disease. Ann Rev Biochem 80:1089–1115PubMedCrossRefGoogle Scholar
  3. Bartke A (2008) Insulin and aging. Cell Cycle 7:3338–3343PubMedCrossRefGoogle Scholar
  4. Ben-Zvi A, Miller EA, Morimoto RI (2009) Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc Natl Acad Sci USA 106:14914–14919PubMedCrossRefGoogle Scholar
  5. Bishop NA, Guarente L (2007a) Genetic links between diet lifespan: shared mechanisms from yeast to humans. Nat Rev Genet 8:835–844PubMedCrossRefGoogle Scholar
  6. Bishop NA, Guarente L (2007b) Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 447:545–549PubMedCrossRefGoogle Scholar
  7. Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA (2008) Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J Neurosci 28:6926–6937CrossRefGoogle Scholar
  8. Bratic I, Hench J, Henriksson J, Antebi A, Burglin TR, Trifunovic A (2009) Mitochondrial DNA level but not active replicase is essential for Caenorhabditis elegans development. Nucl Acids Res 37:1817–1828PubMedCrossRefGoogle Scholar
  9. Brignull HR, Moore FE, Tang SJ, Morimoto RI (2006) Polyglutamine proteins at the pathogenic threshold display neuron-specific aggregation in a pan-neuronal Caenorhabditis elegans model. J Neurosci 26:7597–7606PubMedCrossRefGoogle Scholar
  10. Cahill CM, Tzivion G, Nasrin N, Ogg S, Dore J, Ruvkun G, Alexer-Bridges M (2001) Phosphatidylinositol 3-kinase signaling inhibits DAF-16 DNA binding function via 14-3-3-dependent 14-3-3-independent pathways. J Biol Chem 276:13402–13410PubMedCrossRefGoogle Scholar
  11. Calderwood SK, Murshid A, Prince T (2009) The shock of aging: molecular chaperones the heat shock response in longevity and aging – a mini-review. Gerontology 55:550–558PubMedCrossRefGoogle Scholar
  12. Carrano AC, Liu Z, Dillin A, Hunter T (2009) A conserved ubiquitination pathway determines longevity in response to diet restriction. Nature 460:396–399PubMedGoogle Scholar
  13. Chan DC (2006) Mitochondria: dynamic organelles in disease, aging and development. Cell 125:1241–1252PubMedCrossRefGoogle Scholar
  14. Chiang WC, Ching TT, Lee HC, Mousigian C, Hsu AL (2012) HSF-1 regulators DDL-1/2 link insulin-like signaling to heat-shock responses and modulation of longevity. Cell 148:322–334PubMedCrossRefGoogle Scholar
  15. Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A (2006) Opposing activities protect against age-onset proteotoxicity. Science 313:1604–1610PubMedCrossRefGoogle Scholar
  16. Cohen E, Paulsson JF, Blinder P, Burstyn-Cohen T, Du D, Estepa G, Adame A, Pham HM, Holzenberger M, Kelly JW, Masliah E, Dillin A (2009) Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell 139:1157–1169PubMedCrossRefGoogle Scholar
  17. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325:201–204PubMedCrossRefGoogle Scholar
  18. Cui H, Kong Y, Zhang H (2012) Oxidative stress mitochondrial dysfunction and aging. J Signal Transduct. doi:10.1155/2012/646354Google Scholar
  19. Dillin A, Cohen E (2011) Ageing protein aggregation-mediated disorders: from invertebrates to mammals. Philos Trans R Soc Lond B Biol Sci 366:94–98PubMedCrossRefGoogle Scholar
  20. Dillin A, Crawford DK, Kenyon C (2002a) Timing requirements for insulin/IGF-1 signaling in C. elegans. Science 298:830–834PubMedCrossRefGoogle Scholar
  21. Dillin A, Hsu A-L, Arantes-Oliveira N, Lehrer-Graiwer J, Hsin H, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002b) Rates of behavior aging specified by mitochondrial function during development. Science 298:2398–2401PubMedCrossRefGoogle Scholar
  22. Durieux J, Wolff S, Dillin A (2011) The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144:79–91PubMedCrossRefGoogle Scholar
  23. Elchuri S, Oberley TD, Qi W, Eisenstein RS, Jackson Roberts L, Van Remmen H, Epstein CJ, Huang TT (2005) CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 24:367–380PubMedCrossRefGoogle Scholar
  24. Feng J, BussiËre F, Hekimi S (2001) Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell 1:633–644PubMedCrossRefGoogle Scholar
  25. Ferguson AA, Springer MG, Fisher AL (2010) skn-1-Dependent and -independent regulation of aip-1 expression following metabolic stress in Caenorhabditis elegans. Mol Cell Biol 30:2651–2667PubMedCrossRefGoogle Scholar
  26. Finkel T (2000) Redox-dependent signal transduction. FEBS Lett 476:52–54PubMedCrossRefGoogle Scholar
  27. Florez-McClure ML, Hohsfield LA, Fonte G, Bealor MT, Link CD (2007) Decreased insulin-receptor signaling promotes the autophagic degradation of beta-amyloid peptide in C. elegans. Autophagy 3:569–580PubMedGoogle Scholar
  28. Garigan D, Hsu AL, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161:1101–1112PubMedGoogle Scholar
  29. Hansen M, Chra A, Mitic LL, Onken B, Driscoll M, Kenyon C (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4:e24PubMedCrossRefGoogle Scholar
  30. Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20:145–147PubMedGoogle Scholar
  31. Hassan WM, Merin DA, Fonte V, Link CD (2009) AIP-1 ameliorates beta-amyloid peptide toxicity in a Caenorhabditis elegans Alzheimer’s disease model. Hum Mol Genet 18:2739–2747PubMedCrossRefGoogle Scholar
  32. Hertweck M, Gobel C, Baumeister R (2004) C elegans SGK-1 is the critical component in the Akt/PKB kinase complex to control stress response and life span. Dev Cell 6:577–588PubMedCrossRefGoogle Scholar
  33. Holloszy JO, Fontana L (2007) Caloric restriction in humans. Exp Gerontol 42:709–712PubMedCrossRefGoogle Scholar
  34. Horner MA, Quintin S, Domeier ME, Kimble J, Labouesse M, Mango SE (1998) pha-4 an HNF-3 homolog specifies pharyngeal organ identity in Caenorhabditis elegans. Genes Dev 12:1947–1952PubMedCrossRefGoogle Scholar
  35. Houthoofd K, Vanfleteren JR (2006) The longevity effect of dietary restriction in Caenorhabditis elegans. Exp Gerontol 41:1026–1031PubMedCrossRefGoogle Scholar
  36. Houthoofd K, Braeckman BP, Lenaerts I, Brys K, De Vreese A, Van Eygen S, Vanfleteren JR (2002) No reduction of metabolic rate in food restricted Caenorhabditis elegans. Exp Gerontol 37:1359–1369PubMedCrossRefGoogle Scholar
  37. Houthoofd K, Braeckman BP, Johnson TE, Vanfleteren JR (2003) Life extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in Caenorhabditis elegans. Exp Gerontol 38:947–954PubMedCrossRefGoogle Scholar
  38. Hsu AL, Murphy CT, Kenyon C (2003) Regulation of aging age-related disease by DAF-16 and heat-shock factor. Science 300:1142–1145PubMedCrossRefGoogle Scholar
  39. Imai J, Maruya M, Yashiroda H, Yahara I, Tanaka K (2003) The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. Embo J 22:3557–3567PubMedCrossRefGoogle Scholar
  40. Jung T, Bader N, Grune T (2007) Oxidized proteins: intracellular distribution and recognition by the proteasome. Arch Biochem Biophys 462:231–237PubMedCrossRefGoogle Scholar
  41. Kahn NW, Rea SL, Moyle S, Kell A, Johnson TE (2008) Proteasomal dysfunction activates the transcription factor SKN-1 and produces a selective oxidative-stress response in Caenorhabditis elegans. Biochem J 409:205–213PubMedCrossRefGoogle Scholar
  42. Kumar P, Ambasta RK, Veereshwarayya V, Rosen KM, Kosik KS, Band H, Mestril R, Patterson C, Querfurth HW (2007) CHIP and HSPs interact with beta-APP in a proteasome-dependent manner and influence Abeta metabolism. Hum Mol Genet 16:848–864PubMedCrossRefGoogle Scholar
  43. Lakowski B, Hekimi S (1998) The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci USA 95:13091–13096PubMedCrossRefGoogle Scholar
  44. Lanneau D, Wettstein G, Bonniaud P, Garrido C (2010) Heat shock proteins: cell protection through protein triage. Sci World J 10:1543–1552CrossRefGoogle Scholar
  45. Lee SS, Lee RYN, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2002) A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 33:40–48PubMedCrossRefGoogle Scholar
  46. Li J, Tewari M, Vidal M, Lee SS (2007) The 14-3-3 protein FTT-2 regulates DAF-16 in Caenorhabditis elegans. Dev Biol 301:82–91PubMedCrossRefGoogle Scholar
  47. Li J, Ebata A, Dong Y, Rizki G, Iwata T, Lee SS (2008) Caenorhabditis elegans HCF-1 functions in longevity maintenance as a DAF-16 regulator. PLoS Biol 6:e233PubMedCrossRefGoogle Scholar
  48. Li W, Yang Q, Mao Z (2011a) Chaperone-mediated autophagy: machinery regulation biological consequences. Cell Mol Life Sci 68:749–763PubMedCrossRefGoogle Scholar
  49. Li X, Matilainen O, Jin C, Glover-Cutter KM, Holmberg CI, Blackwell TK (2011b) Specific SKN-1/Nrf stress responses to perturbations in translation elongation proteasome activity. PLoS Genet 7:e1002119PubMedCrossRefGoogle Scholar
  50. Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278:1319–1322PubMedCrossRefGoogle Scholar
  51. Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677PubMedCrossRefGoogle Scholar
  52. Lu Q, Yang P, Huang X, Hu W, Guo B, Wu F, Lin L, Kovacs AL, Yu L, Zhang H (2011) The WD40 repeat PtdIns(3)P-binding protein EPG-6 regulates progression of omegasomes to autophagosomes. Dev Cell 21:343–357PubMedCrossRefGoogle Scholar
  53. Mair W, Dillin A (2008) Aging and survival: the genetics of life span extension by dietary restriction. Ann Rev Biochem 77:727–754PubMedCrossRefGoogle Scholar
  54. Mary J, Vougier S, Picot CR, Perichon M, Petropoulos I, Friguet B (2004) Enzymatic reactions involved in the repair of oxidized proteins. Exp Gerontol 39:1117–1123PubMedCrossRefGoogle Scholar
  55. McElwee JJ, Schuster E, Blanc E, Thomas JH, Gems D (2004) Shared transcriptional signature in Caenorhabditis elegans Dauer larvae and long-lived daf-2 mutants implicates detoxification system in longevity assurance. J Biol Chem 279:44533–44543PubMedCrossRefGoogle Scholar
  56. Menzies FM, Moreau K, Rubinsztein DC (2011) Protein misfolding disorders and macroautophagy. Curr Opin Cell Biol 23:190–197PubMedCrossRefGoogle Scholar
  57. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326PubMedCrossRefGoogle Scholar
  58. Morley JF, Morimoto RI (2004) Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol Biol Cell 15:657–664PubMedCrossRefGoogle Scholar
  59. Morris JZ, Tissenbaum HA, Ruvkun G (1996) A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382:536–539PubMedCrossRefGoogle Scholar
  60. Mun JY, Lee TH, Kim JH, Yoo BH, Bahk YY, Koo HS, Han SS (2010) Caenorhabditis elegans mitofilin homologs control the morphology of mitochondrial cristae influence reproduction physiology. J Cell Physiol 224:748–756PubMedCrossRefGoogle Scholar
  61. Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:277–283PubMedCrossRefGoogle Scholar
  62. Nystrom T (2005) Role of oxidative carbonylation in protein quality control senescence. EMBO J 24:1311–1317PubMedCrossRefGoogle Scholar
  63. Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G (1997) The Forkheadtranscription factor DAF-16 transduces insulin-like metabolic longevitysignals in C elegans. Nature 389:995Google Scholar
  64. Panowski SH, Wolff S, Aguilaniu H, Durieux J, Dillin A (2007) PHA-4/Foxa mediates diet-restriction-induced longevity of C elegans. Nature 447:550–555PubMedCrossRefGoogle Scholar
  65. Paradis S, Ruvkun G (1998) Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 12:2488–2498PubMedCrossRefGoogle Scholar
  66. Paradis S, Ailion M, Toker A, Thomas JH, Ruvkun G (1999) A PDK1 homolog is necessary sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev 13:1438–1452PubMedCrossRefGoogle Scholar
  67. Park SK, Tedesco PM, Johnson TE (2009) Oxidative stress longevity in Caenorhabditis elegans as mediated by SKN-1. Aging Cell 8:258–269PubMedCrossRefGoogle Scholar
  68. Pickart CM (2001) Mechanisms underlying ubiquitination. Annual review of biochemistry 70:503–533PubMedCrossRefGoogle Scholar
  69. Pickart CM, Cohen RE (2004) Proteasomes their kin: proteases in the machine age. Nat Rev Mol Cell Biol 5:177–187PubMedCrossRefGoogle Scholar
  70. Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B, Rockenstein E, Levine B et al (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease regulates amyloid beta accumulation in mice. J Clin Invest 118:2190–2199PubMedGoogle Scholar
  71. Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S et al (2010) Regulation of mammalian autophagy in physiology pathophysiology. Physiol Rev 90:1383–1435PubMedCrossRefGoogle Scholar
  72. Rezzi S, Martin FP, Shanmuganayagam D, Colman RJ, Nicholson JK, Weindruch R (2009) Metabolic shifts due to long-term caloric restriction revealed in nonhuman primates. Exp Gerontol 44:356–362PubMedCrossRefGoogle Scholar
  73. Riederer BM, Leuba G, Vernay A, Riederer IM (2011) The role of the ubiquitin proteasome system in Alzheimer’s disease. Exp Biol Med (Maywood) 236:268–276CrossRefGoogle Scholar
  74. Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy aging. Cell 146:682–695PubMedCrossRefGoogle Scholar
  75. Scheffner M, Nuber U, Huibregtse JM (1995) Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373:81–83PubMedCrossRefGoogle Scholar
  76. Staub O, Rotin D (2006) Role of ubiquitylation in cellular membrane transport. Physiol Rev 86:669–707PubMedCrossRefGoogle Scholar
  77. Stefani M, Dobson CM (2003) Protein aggregation aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med (Berl) 81:678–699CrossRefGoogle Scholar
  78. Steinkraus KA, Smith ED, Davis C, Carr D, Pendergrass WR, Sutphin GL, Kennedy BK, Kaeberlein M (2008) Dietary restriction suppresses proteotoxicity enhances longevity by an hsf-1-dependent mechanism in Caenorhabditis elegans. Aging Cell 7:394–404PubMedCrossRefGoogle Scholar
  79. Suzuki K, Ohsumi Y (2007) Molecular machinery of autophagosome formation in yeast Saccharomyces cerevisiae. FEBS Lett 581:2156–2161PubMedCrossRefGoogle Scholar
  80. Suzuki YJ, Carini M, Butterfield DA (2010) Protein carbonylation. Antioxid Redox Signal 12:323–325PubMedCrossRefGoogle Scholar
  81. Taylor RC, Dillin A (2011) Aging as an event of proteostasis collapse. Cold Spring Harb Perspect Biol 3. doi:10.1101/cshperspect.a004440Google Scholar
  82. Tullet JMA, Hertweck M, An JH, Baker J, Hwang JY, Liu S, Oliveira RP, Baumeister R, Blackwell TK (2008) Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132:1025–1038PubMedCrossRefGoogle Scholar
  83. Tyedmers J, Mogk A, Bukau B (2010) Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol 11:777–788PubMedCrossRefGoogle Scholar
  84. Volovik Y, Maman M, Dubnikov T, Bejerano-Sagie M, Joyce D, Kapernick EA, Cohen E, Dillin A (2012) Temporal requirements of heat shock factor-1 for longevity assurance. Aging Cell 11:491–499PubMedCrossRefGoogle Scholar
  85. Walker GA, Lithgow GJ (2003) Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals. Aging Cell 2:131–139PubMedCrossRefGoogle Scholar
  86. Weindruch R, Naylor PH, Goldstein AL, Walford RL (1988) Influences of aging and dietary restriction on serum thymosin alpha 1 levels in mice. J Gerontol 43:B40–42PubMedCrossRefGoogle Scholar
  87. Wolff S, Dillin A (2006) The trifecta of aging in Caenorhabditis elegans. Exp Gerontol 41:894–903PubMedCrossRefGoogle Scholar
  88. Wolff S, Ma H, Burch D, Maciel GA, Hunter T, Dillin A (2006) SMK-1, an essential regulator of DAF-16-mediated longevity. Cell 124:1039–1053PubMedCrossRefGoogle Scholar
  89. Wong E, Cuervo AM (2010) Integration of clearance mechanisms: the proteasome autophagy. Cold Spring Harb Perspect Biol 2:a006734PubMedCrossRefGoogle Scholar
  90. Yang Z, Klionsky DJ (2009) An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335:1–32PubMedCrossRefGoogle Scholar
  91. Yokoyama K, Fukumoto K, Murakami T, Harada S, Hosono R, Wadhwa R, Mitsui Y, Ohkuma S (2002) Extended longevity of Caenorhabditis elegans by knocking in extra copies of hsp70F, a homolog of mot-2 (mortalin)/mthsp70/Grp75. FEBS Lett 516:53–57PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Molecular and Cell Biology LaboratorySalk Institute for Biological StudiesLa JollaUSA

Personalised recommendations