Advertisement

Case Study: Lattice Cover Graph Construction

  • Derrick G. Kourie
  • Bruce W. Watson
Chapter

Abstract

In this chapter, the correctness by construction approach is applied to an algorithmic problem that lies well off the beaten track of classical text book examples. The algorithm has been in the public domain since about 2000, but was only clearly explained and its correctness shown in 2010 [26]. The algorithm has also been shown to be considerably more efficient than its rivals.

Keywords

Closure System Concept Lattice Recursive Call Formal Concept Analysis Line Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 3.
    G. Arévalo, in Proceedings of LMO 2003: Langages et Modeles à Objets, Understanding behavioral dependencies in class hierarchies using concept analysis, Hermes, Paris, January 2003. pp 47–59Google Scholar
  2. 4.
    G. Birkhoff, Lattice Theory (Amer. Math. Soc. Coll. Publ., Providence, R.I., 1973)Google Scholar
  3. 5.
    C.L. Blake, C.J. Merz, UCI repository of machine learning databases. University of California, Irvine, Dept. of Information and Computer Sciences, 1998Google Scholar
  4. 6.
    J.P. Bordat, Calcul pratique du treillis de Galois d’une correspondance. Math. Sci. Hum. 23(2), 243–250 (1978)MathSciNetGoogle Scholar
  5. 8.
    C. Carpineto, G. Romano, Concept Data Analysis: Theory and Applications (John Wiley & Sons Ltd, New York, 2004)MATHCrossRefGoogle Scholar
  6. 9.
    C. Carpineto, G. Romano, A lattice conceptual clustering system and its application to browsing retrieval. Mach. Learn. 24(2), 95–122 (1996)Google Scholar
  7. 17.
    L.C. Freeman, D.R. White, Using Galois lattices to represent network data. Sociol. Methodol. 23, 127–146 (1993)CrossRefGoogle Scholar
  8. 18.
    B. Ganter. Two basic algorithms in concept analysis, FB4-Preprint No. 831 (Technische Hochschule Darmstadt, June 1984)Google Scholar
  9. 19.
    B. Ganter, R. Wille, Formal Concept Analysis: Mathematical Foundations (Springer, Berlin, 1999)MATHCrossRefGoogle Scholar
  10. 20.
    R. Godin, R. Missaoui, H. Alaoui. Incremental concept formation algorithms based on Galois lattices. Comput. Intell. 11(2), 243–250 (1995)CrossRefGoogle Scholar
  11. 22.
    P.A. Grigoriev, S.A. Yevtushenko, in Concept Lattices: Proc. of the 2nd Int. Conf. on Formal Concept Analysis, ed. by P. Eklund. Quda: applying formal concept analysis in a data mining environment, vol 2961/2004 (Springer, Berlin/Heidelberg, 2004), pp. 386–393Google Scholar
  12. 26.
    D.G. Kourie, S. Obiedkov, B.W. Watson, F.D. van der Merwe, An incremental algorithm to construct a lattice of set intersections. Sci. Comput. Program. 74(3), 128–142 (2009)MATHCrossRefGoogle Scholar
  13. 28.
    S. Kuznetsov, S. Obiedkov, Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Intell. 14(2/3), 189–216 (2002)MATHCrossRefGoogle Scholar
  14. 29.
    S. Kuznetsov, in Concept Lattices: Proceedings of the 2nd International Conference on Formal Concept Analysis, ed. by P. Eklund. Machine learning and formal concept analysis. LNCS, vol. 2961 (Springer-Verlag, Berlin, Heidelberg, 2004), pp. 287–312Google Scholar
  15. 33.
    E.M. Norris, An algorithm for computing the maximal rectangles in a binary relation. Rev. Roum. Math. Pures A. 23(2), 243–250 (1978)MathSciNetMATHGoogle Scholar
  16. 34.
    L. Nourine, O. Raynaud, A fast algorithm for building lattices. Inform. Process. Lett. 71, 199–204 (1999)MathSciNetMATHCrossRefGoogle Scholar
  17. 35.
    U. Priss, in Formal Concept Analysis, Foundations and Applications, ed. by B. Ganter, G. Stumme, R. Wille. Linguistic applications of formal concept analysis. LNAI, vol. 3626 (Springer-Verlag, Berlin, Heidelberg, 2005), pp. 149–160Google Scholar
  18. 38.
    G. Stumme, A. Mädche, in Proceedings of the17th International Conference on Artificial Intelligence (IJCAI ’01), ed. by B. Nebel. FCA-merge: Bottom-up merging of ontologies, Seattle, WA, USA, 2001. pp. 225–230Google Scholar
  19. 39.
    T. Tilley, R. Cole, P. Becker, P. Eklund, in Formal Concept Analysis, Foundations and Applications, ed. by Bernhard Ganter, Robert Godin, A survey of formal concept analysis support for software engineering activities. Lecture Notes in Computer Science, vol. 3626, July 2005, pp. 250–271Google Scholar
  20. 40.
    P. Valtchev, R. Missaoui, R. Godin, in Concept Lattices: Proceedings of the 2nd International Conference on Formal Concept Analysis, ed. by P. Eklund. Formal concept analysis for knowledge discovery and data mining: The new challenges. LNCS, vol. 2961 (Springer-Verlag, Berlin, Heidelberg, 2004), pp. 352–371Google Scholar
  21. 41.
    F.J. van der Merwe, Constructing concept lattices and compressed pseudo-lattices, Master’s thesis, University of Pretoria, 2003Google Scholar
  22. 42.
    F.J. van der Merwe, S. Obiedkov, D.G. Kourie, in Concept Lattices: Proc. of the 2nd Int. Conf. on Formal Concept Analysis, ed. by P. Eklund. AddIntent: A new incremental algorithm for constructing concept lattices. LNCS, vol. 2961 (Springer-Verlag, Berlin, Heidelberg, 2004), p. 411Google Scholar
  23. 49.
    S.A. Yevtushenko, in Proceedings of the 7th national conference on Artificial Intelligence KII-2000. System of data analysis “concept explorer” (in Russian), Russia (2000), pp. 127–134Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Derrick G. Kourie
    • 1
  • Bruce W. Watson
    • 2
  1. 1.Department of Computer ScienceUniversity of PretoriaPretoriaSouth Africa
  2. 2.FASTAR Group, Information ScienceStellenbosch UniversityStellenboschSouth Africa

Personalised recommendations